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Brief description

The intro presented key methods in Bayesian inference and basic models
and faced ‘severe’ computational problems quite rapidly

We introduce core computational strategies to deal with those problems.

Here intro to Markov chain Monte Carlo (MCMC) strategies
• Gibbs sampling

• Metropolis-Hastings

• Hamiltonian Monte Carlo
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Sources

French and Rios Insua (2000) Ch 7

Rios Insua et al (2010) Ch4 

BDA3 (2015) Ch11, 12 

Hoff (2009) Ch 6,7
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Computational problems in Bayesian analysis

Computing the posterior

Computing the predictive

Finding the optimal alternative
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Strategies so far

• Conjugate models

• (Posterior asymptotics to normality)

• (Laplace integration)

Insufficient for modern stats and machine learning!!
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Numerical and MC integration
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Numerical integration. Brief recall

Problem

s-dimensional trapezium rule 

error analysis

Dependence of error bound on dimension is typical!!!!
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Monte Carlo integration. Brief recall

Problem

Deterministic problem recast as stochatic

(Monte Carlo)
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Monte Carlo integration. Brief recall

Suggested strategy
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Monte Carlo integration. Brief recall

Analysis. SLLN

Error bounds

CLT prob. error bounds

SE 
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MC vs trapezium

This is general. As dimension grows, numerical gets less efficient… but
MC’s efficiency is dimension independent!!!
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Markov chain Monte Carlo intro
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MC. Generalization

Problem

Strategy
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General idea 

Objective

Difficult or inefficient to sample from g
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General idea 

Markov chain Xn with same state space and convergent to target 
distribution g

Strategy
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Problem

So how do we ‘invent’ such Markov chains?
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Motivating Gibbs sampler

(X,Y) Bernoulli variables with joint distribution

Compute the marginals of X and Y

Compute the conditionals
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Motivating Gibbs sampler

The conditionals are characterised by
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Motivating Gibbs sampler

Consider the sampling scheme
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Motivating Gibbs sampler

Xn a Markov chain with transition matrix
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Motivating Gibbs sampler

Convergence of Xn

Similarly,
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Recall
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Convergence

Kernel
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Motivating Gibbs sampler

Example
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Motivating Gibbs sampler

Example
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Motivating Gibbs sampler

Example
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Metropolis-Hastings algorithm
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Recall: Acceptance-rejection sampling
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Metropolis-Hastings rationale I

Transition kernel of Markov chain

Invariant distribution

n-th iterate
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Metropolis-Hastings rationale II

Invariant distribution and reversibility. Suppose that for p kernel (x,y)
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Metropolis-Hastings rationale III

Adjusting a candidate generating distribution
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Metropolis-Hastings rationale IV

Balance condition

Observations

• Normalising constant not required

• If q symmetric, Metropolis
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Metropolis-Hastings  algo
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Metropolis-Hastings  variants I

Random walk chain

Metropolis algorithm

Independence chain

Curso JAE 2021



Convergence

Kernel
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Hamiltonian MC. Basics
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HMC. Pros and cons

• Improved computational efficiency over MH et al (specially in high
dimensional complex problems)

• Difficulties in implementation…. But Stan is available now: automates
tuning of HMC parameters (and can be called from R and Python)

• But Stan a bit of a black box 

• Still insufficient for Bayesian analysis of deep learning models… Lect 3 
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The drawback of MH

Balance condition in MH and M algos. Currentx, proposed y

Frequents regions of higher posterior density.  Sample from the right region

Ocasionally visits low density regions. Fully explore the sample space

As proposals are random, may take quite some time to get in HPD regions

May get stuck
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The drawback of MH
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HMC. Qualitative description

• A guided proposal generation scheme

• Uses the gradient of log posterior to direct MC towards HPD regions:

A well-tuned HMC accepts proposals at much higher rate than MH

• But still samples the tails properly
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HMC. Idea 
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f is the posterior

-log (f)  inverse bell-shaped

lower values reached guided by its
gradient

In classical mechanics, exchanges
between kinetic and potential energy
dictate location through hamiltonian
equations

( 𝜃, 𝑝) horizontal and vertical positions.
p is a momentum (auxiliary variable to 
actually simulate from 𝜃)  mass x velocity



Hamiltonian equations and MCMC

Target is posterior.  Auxiliary momentum (same dimension)

Hamiltonian as potential + kinetic

Hamiltonian equations

Curso JAE 2021



Hamiltonian equations through leapfrog
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HMC. Algo I
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HMC. Algo II
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HMC Tuning

Step size. Small relative to parameter of interest

x Number of leapfrog steps. Large L.

Jointly acceptance rate of 65%

Examine for correlations

Adaptively select L as in No U-turn Sampler (NUTS) .  To be seen with Stan

Covariance matrix M
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Example
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Sampling the bi-variate normal

Simple example to recall approach

Model.  Bivariate normal with unknown means. Variances 1. Known
correlation 𝜚

1 observation

Prior. Uniform

Use. Expected value and variance of parameters, Expected cross
product, Probability that parameter belongs to a set 
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Sampling the bi-variate normal. Model and posterior
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Sampling the bi-variate normal. Gibbs sampler
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Sampling the bi-variate normal. Metropolis Hastings
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Sampling the bi-variate normal. Metropolis Hastings
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Sampling the bi-variate normal. Hamiltonian MC
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Sampling the bi-variate normal. Hamiltonian MC. Bonus
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Sampling the bi-variate normal. Answers
(Whatever the method used) 
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Further variants
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Reversible jump

In many complex problems we need to do trans-dimensional Markov chain
simulation

• Mixtures with unknown number of components
• Shallow neural nets with unknown number of hidden nodes
• Model averaging
• Bartmachine

Parameters=(indicator of model, parameters of such model)
Within the model, a ‘standard’ Markov chain (Gibbs, MH, HMC, etc…)
Between models, Metropolis Hastings with reversible moves (jumps, 
collapsing and splitting models…)

See classic paper by Peter Green in VC
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Particle filtering

For nonlinear sequential problems, MCMC gets complex

Generate initial sample at time t=0

Let them evolve (and learn) according to nonlinear sequential model

Introduce rules to avoid collapse of particles
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Augmented probability simulation (I)

Expected utility when probabilities depend on alternative

If utility positive and integrable, define augmented probability
distribution

Mode of marginal of AP is the optimal alternative
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Augmented probability simulation (II)

Proposed scheme

For 1, MCMC technology

For 2, cluster analysis, density estimation,….
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Inference and assessing convergence
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Inference

Once convergence detected, collect samples from posterior and 
perform inference (point estimates, intervals, hypothesis tests, 
predictions and expected utility computations) via Monte Carlo (recall
uncertainty associated, they are stochastic algos!!!)
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Difficulties

If iterations have not proceeded long enough, target is not
approximated well, samples are unrepresentative of target!!!

Early iterations may bias results

Autocorrelation impacts precision of estimates and the effective
number of samples may be smaller than the one actually drawn (as if
we’d be using a smaller number of samples)
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Solutions

Runs to allow for effective monitoring of convergence (based on
multiple chains, recall labs)

Monitor convergence by comparing variation within and between
simulated sequences (until within and between variation are similar)

Modifying the algorithm by reparameterising or learning good
parameterisations, if efficiency is very low (algo too slow)

Discarding initial values

Thinning

Take into account AC when estimating precisions
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Final comments
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Final comments

Gibbs. Lots of hard prior work. Not always implementable. If so may
work well.

Metropolis Hastings. Less prior work. Quite general. May work slowly.

Hamiltonian. Even less work. Quite general. Works more efficiently…. 
Yet suffers in large scale problems
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Computational problem in Bayesian analysis

Computing the posterior

Large scale problems. The modern statistical paradigm (but not always and not for
the whole problem) 

What if the amount of data is large? (Big data problems)
What if the amount of parameters is large? (e.g. neural nets)
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