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First of all... Why all this?

Modern machine learning — mostly centered on point-wise predictions
Estimate the uncertainty of the predictions — Bayesian approach

in the model formulation

Posterior Dist. p(W|Data) = p(W)p(Data|W)/p(Data)

Predictive Dist. p(y|Data, z) = [ p(y|W,z)p(W|Data)dW

Computing p(Data) is intractable! = different approximate solutions,
such as BNNs (VI, EP, AVB, etc.) or GPs

Non-paremetric approaches s.a. GPs could help ease our job
(real-world problems are complicated!)

— Intrinsic advantages and issues!
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Ideal case

We would like a model capable capable of:

@ Producing flexible predictive distributions so it's useful in many
different problems (reproduce exotic behavior s.a. bimodality,
heterocedasticity, etc.)

@® Bayesian approach = Sensibly update the prior w.r.t. the
training data

© Being scalable to large datasets

Stablished methods = lack some properties, while exceed at others

Could we combine some of them to improve overall?
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Brief mention of kernel methods

Widespread models based on learning kernel functions
Instance based methods = Learn parameters for each training
data point (must remember these)

Predictions = Similarity function k(-,-) between train and test
points (kernel)

Kernel can be decomposed by a feature space mapping ¢(+)
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Brief mention of kernel methods

® Widespread models based on learning kernel functions
Instance based methods = Learn parameters for each training
data point (must remember these)

Predictions = Similarity function k(-,-) between train and test
points (kernel)

Kernel can be decomposed by a feature space mapping ¢(+)

k(x,x') = ¢(x) T o(x')

® Many different
kernels to choose
from

® Flexible
approach =
many different
usages (SVMs,
GPs, PCA..)

Hyperplane

Support
Vectors
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Approximate inference and GPs

h;(x) = tanh <Eq{:1 xiwji>

Fx) =0 vihy(x)

Posterior Dist. p(W|Data) = p(W)p(Data|W)/p(Data)
Predictive Dist. p(y/Data,z) = [ p(y|W,z)p(W|Data)dW

Challenges: Non-parametric models would simplify our job (problems
can be complex!) and computing p(Data) is intractable!

Hint: One (vanilla) solution is simply setting p(W) ~ A (W0, 521)

5/27



Gaussian Processes

GPs: Distribution over functions f(-) so that for any finite {x;}% ,,
(f(x1),-..,f(xn))T" follows an N-dimensional Gaussian distribution.

6/27



Gaussian Processes

GPs: Distribution over functions f(-) so that for any finite {x;}/,,
(f(x1),-..,f(xn))T" follows an N-dimensional Gaussian distribution.

0.4 \

0.3
0.2

0.1

0.0

6/27



Gaussian Processes

GPs: Distribution over functions f(-) so that for any finite {x;}/,,
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Gaussian Processes

GPs: Distribution over functions f(-) so that for any finite {x;}% ,,
(f(x1),-..,f(xn))T" follows an N-dimensional Gaussian distribution.
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Regression with GPs
}7,- =y +¢€, with p(y) :N(y’07 K): € NN(O7ﬂ71)

Due to Gaussian form, there are closed-form solutions for many useful
questions about finite data!
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Gaussian Processes

e The joint distribution for y* at test points {x%}M_, and y:

wrn=x((3] [ &)

® These matrices are computed from the covariance C(-,-; 0):
[K9]n,n’ - C(X,-,, Xn/s 9)
[kG]n,m = C(Xm xfn; 6) s [K/H]m,m’ = C(X:q; x;q/; 9) s

® The predictive distribution for y* given y, p(y*|y), is:
y* “J/\/(n1v§])
m=kjK,'y, Y =rg—kjK, ko,
® The log of the marginal likelihood, p(y|6), is:

N 1 1,
log p(y) = —= log 27 — 5 log|Ky| — 2y 'K,y
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An Example of a Covariance Function

9

N =

Jj=1

Squared Exponential: C(x,x') = o2 exp {
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An Example of a Covariance Function

1(x)

f(x)

Squared Exponential: C(x
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Some issues with GPs

GPs are an easy approach for regression in simple issues
® Non-parametric.

® Bayesian inference is tractable.

® Hyper-parameter tuning by maximizing the marginal likelihood.

They also have important problems:
* Scalability: Matrix inversion (K, ') is super costly (O(N3))!

® Gaussianity: Normal behavior may be too simple for real-world
problems!

NNs are interesting as well
® Automatic feature representation learning.

® Scale to very large datasets.

® Bayesian inference is intractable.

Can we get the benefits of the two approaches?
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Carry out approximate Bayesian inference in neural networks with
a finite number of neurons in the space of weights!
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Bayesian Neural Networks

Carry out approximate Bayesian inference in neural networks with
a finite number of neurons in the space of weights!

Posterior Dist. p(W|Data) = p(W)p(Data|W)/p(Data)

Predictive Dist. p(y|Data, z) = [ p(y|W,z)p(W|Data)dW

How do we approximate these quantities?
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Variational Inference - a quick reminder
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to some target distribution p, known up to the normalization constant.
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Variational Inference - a quick reminder

Used to find the parameters of a distribution g, so that it looks similar
to some target distribution p, known up to the normalization constant.

It is based on the following decomposition:

log p(D) = L(q) + KL(qlp)

where

£ = [ awyioe { 2 o, kialle) = - [ aowyrox { 20D  aw > 0

p(W, D), the product of the prior and the likelihood factors, simplifies
with the logarithm and £(q) is feasible to evaluate.
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Decomposition of the Marginal Likelihood

KL(q|p)

In p(D)
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Maximization of the Lower Bound

The joint distribution can be expressed as p(D, W) = p(D|W)p(W).
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Maximization of the Lower Bound

The joint distribution can be expressed as p(D, W) = p(D|W)p(W).

If the likelihood factorizes across data instances (y;, x;):

L= Y, Byllog p(yi|W,x;)] — KL(q|prior)
® Monte Carlo and mini-batches! } \
® Closed form solution if the prior and g are Gaussian!

Stochastic optimization techniques enable VI on deep neural
networks and massive datasets!
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parametric and assumes independence!
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Approximate Inference in Weight Space

The posterior distribution is very complicated and q is often
parametric and assumes independence!

1x100 2x100 3x100 5x 100

Undesirable behavior as more units or layers are added!

(Sun et al., 2019)
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Why use the function space?

Benefits:

@ Avoids symmetric modes in the posterior of parameter space!
® May potentially give better predictions and uncertainty estimates.
© May consider more flexible priors than GPs.

O Avoids pathologies related to the size of the inference problem!
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Why use the function space?

Benefits:

@ Avoids symmetric modes in the posterior of parameter space!
® May potentially give better predictions and uncertainty estimates.
© May consider more flexible priors than GPs.

O Avoids pathologies related to the size of the inference problem!

Approximate inference is challenging since it involves working with
random functions rather than with finite sets of variables!
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Implicit Processes

Collection of random variables f(-), such that any finite collection
{f(x1),...,f(xn)} has joint distribution defined by the generative
process:

z~ p(z), f(xn) = go(xn,2) .
Bayesian neural networks: 6 = means and variances of W
W NN(W’0a|)7 f(X) :gg(W,X),

Neural sampler: § = weights of non-linear function gy(-, ).

Neural sampler Prior samples

TR

SR, AN

x oxz) T IR
z = S




Learning under Implicit Process Priors

Ideally we would like to satisfy two goals:
@ Find a flexible approximation for the posterior distribution.

® Train the model's prior parameters 6.
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@ Find a flexible approximation for the posterior distribution.

® Train the model's prior parameters 6.

Two approaches in the literature:
@ Variational Implicit Process (Ma et al., 2019).
® Learns 6, but with Gaussian predictions
@® Functional Bayesian Neural Network (Sun et al., 2019).

® Flexible implicit predictive distributions, but cannot learn 6.
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Inference with IPs and inducing points

Implicit process f(x) = hys(x, €) as approximate implicit posterior
distribution of the process specified in the prior (as in FBNNSs)

Approximate Inference via functional variational inference (-ELBO):

N
L(q) =Y _ Eqyllog p(yilf (xi))] — KL(g]prior) .
i=1
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Inference with IPs and inducing points

Implicit process f(x) = hys(x, €) as approximate implicit posterior
distribution of the process specified in the prior (as in FBNNSs)

Approximate Inference via functional variational inference (-ELBO):

N
L(q) =Y _ Eqyllog p(yilf (xi))] — KL(g]prior) .
i=1

Challenges:
@ Avoid increasing the number of latent variables with N (as GPs)
®* M < N inducing points (X, u)
® Compute the conditional posterior (intractable)
® MonteCarlo GP approximation for the posterior approximation
p(flu) (as in VIPs)
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Training the system
Our posterior approximation becomes

q(f,u) = py(flu)ge(u)
The variational inference objective is:

p(y|f) potFra) pg(u)
potFa)gy(u)

N
= Ba, o [l08 P(yi[f)] = KL(s(w) | po(u)

L(q) = Eq [log
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Training the system
Our posterior approximation becomes
q(f,u) = py(flu)ge(u)

The variational inference objective is:

p(y|f) potFra) pg(u)
potFa)gy(u)

N
= Ba, o [l08 P(yi[f)] = KL(s(w) | po(u)

L(q) = Eq [log

KL-divergence is intractable (implicit g and p) = classifier to estimate
the log-ratio inside the KL-divergence:

KL(3(u) () = ~E | og gim — Ty [Ta (w)

Tq+(u) = Optimized DNN discriminating samples of g,(u) and pg(u)
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Conditional Distribution and Predictions

It is critical to compute py(f|u) in the model.

21/27



Conditional Distribution and Predictions

It is critical to compute py(f|u) in the model.

Approximated using a GP (as in VIP)

E[f(x)] = miye(x) + Keu(Kuu + 10%) 7 u = miy e(X))
Var(f(x)) = K — Kef(Kuu + 10%) Ky g

Covariances = Monte Carlo methods by sampling from the prior

Predictions can also be approximated by Monte Carlo:

p(f(x.)ly, X) =~ fzpe x.)|us), u~ gy(u).
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Flexibility of the prior functions

Synthetic data with different features to test the functions the prior is
able to learn

's sampled (BNN) Final prior functions sampled (BNN)

Inital pri

Initial prior functions sampled (BNN) Final prior functions sampled (BNN)
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Predictive distribution and results

Flexible final predictions in different synthetic datasets

bim, alpha=1.0

composite , alpha =1.0

10 15 20 25

0 5

5

t_skw , alpha =1.0

100 200 300 400 500

[
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Evolution of the inducing points

Inducing points tend to gather in the regions where data changes most
The data here follows a constant function first, and suddenly change into
a sine function
® The matching point between both behaviors tend to have more
concentration of IPs (M = 50)

X XX MO OK 0K 000K MK XK X X

|

vi
i :
25 5.0
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Conclusions

@ Gaussian Processes and Bayesian neural networks provide partial
solutions for estimating uncertainty in the predictions.

® GPs: simple and work fine for small data, but have flexibility and
scalability problems
® Sparse GPs: scalable, but predictions remain only Gaussian

® BNNs: intractable inference and issues in the optimization procedure

® Approximate inference in function space may be advantageous over
weight space
® Implicit processes are a difficult but very useful tool to deal with all
these issues
® Availability to learn the hyperparameters 6 (/P prior) v/

® Flexibility in the posterior approximation (/P model - NS) with
mixture of Gaussians predictions = General predictive dist. v’

® Scalability in memory (O(M?3)) and convergence time v/
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Thank you for your attention!
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