Gaussian processes and Bayesian NNs in function space

Simón Rodriguez Santana

JAE school of mathematics 2021 Institute of Mathematical Sciences ICMAT-CSIC

Modern machine learning \rightarrow mostly centered on **point-wise predictions**

Modern machine learning \rightarrow mostly centered on **point-wise predictions**

Estimate the uncertainty of the predictions \rightarrow Bayesian approach in the model formulation

Predictive Dist.

Modern machine learning \rightarrow mostly centered on point-wise predictions

Estimate the uncertainty of the predictions \rightarrow Bayesian approach in the model formulation

Posterior Dist. $p(\mathbf{W}|\text{Data}) = p(\mathbf{W})p(\text{Data}|\mathbf{W})/p(\text{Data})$

 $p(y|\text{Data}, x) = \int p(y|\mathbf{W}, x)p(\mathbf{W}|\text{Data})d\mathbf{W}$

Modern machine learning \rightarrow mostly centered on point-wise predictions

Estimate the uncertainty of the predictions \rightarrow Bayesian approach in the model formulation

Posterior Dist. $p(\mathbf{W}|\text{Data}) = p(\mathbf{W})p(\text{Data}|\mathbf{W})/p(\text{Data})$ Predictive Dist. $p(y|\text{Data}, x) = \int p(y|\mathbf{W}, x)p(\mathbf{W}|\text{Data})d\mathbf{W}$

Computing p(Data) is intractable! \Rightarrow different **approximate solutions**, such as **BNNs** (*VI*, *EP*, *AVB*, *etc.*) or **GPs**

Non-paremetric approaches *s.a.* **GPs** could help ease our job (real-world problems are complicated!)

ightarrow Intrinsic advantages and issues!

We would like a model capable capable of:

We would like a model capable capable of:

Producing flexible predictive distributions so it's useful in many different problems (reproduce *exotic* behavior *s.a.* bimodality, heterocedasticity, etc.)

We would like a model capable capable of:

- Producing flexible predictive distributions so it's useful in many different problems (reproduce *exotic* behavior *s.a.* bimodality, heterocedasticity, etc.)
- ② Bayesian approach ⇒ Sensibly update the prior w.r.t. the training data

We would like a model capable capable of:

- Producing flexible predictive distributions so it's useful in many different problems (reproduce *exotic* behavior *s.a.* bimodality, heterocedasticity, etc.)
- ② Bayesian approach ⇒ Sensibly update the prior w.r.t. the training data
- **3** Being scalable to large datasets

We would like a model capable capable of:

- Producing flexible predictive distributions so it's useful in many different problems (reproduce *exotic* behavior *s.a.* bimodality, heterocedasticity, etc.)
- ② Bayesian approach ⇒ Sensibly update the prior w.r.t. the training data
- **3** Being scalable to large datasets

Stablished methods \Rightarrow lack some properties, while exceed at others

Could we combine some of them to improve overall?

Brief mention of kernel methods

- Widespread models based on learning kernel functions
- Instance based methods ⇒ Learn parameters for each training data point (*must remember these*)
- Predictions ⇒ Similarity function k(·, ·) between train and test points (kernel)
- Kernel can be decomposed by a *feature space* mapping $\phi(\cdot)$

Brief mention of kernel methods

- Widespread models based on learning kernel functions
- Instance based methods ⇒ Learn parameters for each training data point (must remember these)
- Predictions ⇒ Similarity function k(·, ·) between train and test points (kernel)
- Kernel can be decomposed by a *feature space* mapping $\phi(\cdot)$

$$k(x,x') = \phi(x)^{\mathsf{T}}\phi(x')$$

- Many different kernels to choose from
- Flexible approach ⇒ many different usages (SVMs, GPs, PCA...)

$$h_j(\mathbf{x}) = \tanh\left(\sum_{i=1}^I x_i w_{ji}\right)$$

$$f(\mathbf{x}) = \sum_{j=1}^{H} v_j h_j(\mathbf{x})$$

$$h_j(\mathbf{x}) = \tanh\left(\sum_{i=1}^I x_i w_{ji}\right)$$

$$f(\mathbf{x}) = \sum_{j=1}^{H} v_j h_j(\mathbf{x})$$

$$h_j(\mathbf{x}) = \tanh\left(\sum_{i=1}^I x_i w_{ji}\right)$$

$$f(\mathbf{x}) = \sum_{j=1}^{H} v_j h_j(\mathbf{x})$$

$$h_j(\mathbf{x}) = \tanh\left(\sum_{i=1}^{I} x_i w_{ji}\right)$$
$$f(\mathbf{x}) = \sum_{j=1}^{H} v_j h_j(\mathbf{x})$$

Posterior Dist. $p(\mathbf{W}|\text{Data}) = p(\mathbf{W})p(\text{Data}|\mathbf{W})/p(\text{Data})$ Predictive Dist. $p(y|\text{Data}, x) = \int p(y|\mathbf{W}, x)p(\mathbf{W}|\text{Data})d\mathbf{W}$

Challenges: Non-parametric models would simplify our job (problems can be complex!) and computing p(Data) is intractable!

$$h_j(\mathbf{x}) = \tanh\left(\sum_{i=1}^{I} x_i w_{ji}\right)$$
$$f(\mathbf{x}) = \sum_{j=1}^{H} v_j h_j(\mathbf{x})$$

Posterior Dist. $p(\mathbf{W}|\text{Data}) = p(\mathbf{W})p(\text{Data}|\mathbf{W})/p(\text{Data})$ Predictive Dist. $p(y|\text{Data}, x) = \int p(y|\mathbf{W}, x)p(\mathbf{W}|\text{Data})d\mathbf{W}$

Challenges: Non-parametric models would simplify our job (problems can be complex!) and computing p(Data) is intractable!

Hint: One (*vanilla*) solution is simply setting $p(\mathbf{W}) \sim \mathcal{N}(\mathbf{W}|0, \sigma^2 \mathbf{I})$

GPs: Distribution over functions $f(\cdot)$ so that for any finite $\{\mathbf{x}_i\}_{i=1}^N$, $(f(\mathbf{x}_1), \ldots, f(\mathbf{x}_N))^T$ follows an *N*-dimensional Gaussian distribution.

GPs: Distribution over functions $f(\cdot)$ so that for any finite $\{\mathbf{x}_i\}_{i=1}^N$, $(f(\mathbf{x}_1), \ldots, f(\mathbf{x}_N))^T$ follows an *N*-dimensional Gaussian distribution.

GPs: Distribution over functions $f(\cdot)$ so that for any finite $\{\mathbf{x}_i\}_{i=1}^N$, $(f(\mathbf{x}_1), \ldots, f(\mathbf{x}_N))^T$ follows an *N*-dimensional Gaussian distribution.

Regression with GPs

 $\hat{y}_i = y_i + \epsilon_i$, with $p(\mathbf{y}) = \mathcal{N}(\mathbf{y}|\mathbf{0},\mathbf{K}), \quad \epsilon_i \sim \mathcal{N}(0,\beta^{-1})$

GPs: Distribution over functions $f(\cdot)$ so that for any finite $\{\mathbf{x}_i\}_{i=1}^N$, $(f(\mathbf{x}_1), \ldots, f(\mathbf{x}_N))^T$ follows an *N*-dimensional Gaussian distribution.

Regression with GPs

 $\hat{y}_i = y_i + \epsilon_i$, with $p(\mathbf{y}) = \mathcal{N}(\mathbf{y}|\mathbf{0},\mathbf{K}), \quad \epsilon_i \sim \mathcal{N}(\mathbf{0},\beta^{-1})$

Due to Gaussian form, there are **closed-form solutions** for many useful questions about finite data!

• The joint distribution for \mathbf{y}^{\star} at test points $\{\mathbf{x}_{m}^{\star}\}_{m=1}^{M}$ and \mathbf{y} :

$$p(\mathbf{y}^{\star}, \mathbf{y}) = \mathcal{N}\left(\left[egin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array}
ight], \left[egin{array}{c} \mathbf{\kappa}_{ heta} & \mathbf{k}_{ heta}^{\mathsf{T}} \\ \mathbf{k}_{ heta} & \mathbf{K}_{ heta} \end{array}
ight]
ight)$$

• The joint distribution for \mathbf{y}^* at test points $\{\mathbf{x}_m^*\}_{m=1}^M$ and \mathbf{y} :

$$p(\mathbf{y}^{\star}, \mathbf{y}) = \mathcal{N}\left(\left[\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array} \right], \left[\begin{array}{c} \boldsymbol{\kappa}_{\theta} & \mathbf{k}_{\theta}^{\mathsf{T}} \\ \mathbf{k}_{\theta} & \mathbf{K}_{\theta} \end{array} \right] \right)$$

• These matrices are computed from the covariance $C(\cdot, \cdot; \theta)$:

$$\begin{split} [\mathbf{K}_{\theta}]_{n,n'} &= C(\mathbf{x}_n, \mathbf{x}_{n'}; \theta) \\ [\mathbf{k}_{\theta}]_{n,m} &= C(\mathbf{x}_n, \mathbf{x}_m^{\star}; \theta), \qquad [\kappa_{\theta}]_{m,m'} = C(\mathbf{x}_m^{\star}, \mathbf{x}_{m'}^{\star}; \theta), \end{split}$$

• The joint distribution for \mathbf{y}^* at test points $\{\mathbf{x}_m^*\}_{m=1}^M$ and \mathbf{y} :

$$p(\mathbf{y}^{\star},\mathbf{y}) = \mathcal{N}\left(\left[\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array}\right], \left[\begin{array}{cc} \boldsymbol{\kappa}_{\theta} & \mathbf{k}_{\theta}^{\mathsf{T}} \\ \mathbf{k}_{\theta} & \mathbf{K}_{\theta} \end{array}\right]\right)$$

• These matrices are computed from the covariance $C(\cdot, \cdot; \theta)$:

$$\begin{split} [\mathsf{K}_{\theta}]_{n,n'} &= C(\mathsf{x}_n, \mathsf{x}_{n'}; \theta) \\ [\mathsf{k}_{\theta}]_{n,m} &= C(\mathsf{x}_n, \mathsf{x}_m^{\star}; \theta), \qquad [\kappa_{\theta}]_{m,m'} = C(\mathsf{x}_m^{\star}, \mathsf{x}_{m'}^{\star}; \theta), \end{split}$$

• The predictive distribution for \mathbf{y}^{\star} given \mathbf{y} , $p(\mathbf{y}^{\star}|\mathbf{y})$, is:

$$\mathbf{y}^\star \sim \mathcal{N}(\mathbf{m}, \mathbf{\Sigma}) \ \mathbf{m} = \mathbf{k}_{ heta}^\mathsf{T} \mathbf{K}_{ heta}^{-1} \mathbf{y} \,, \qquad \mathbf{\Sigma} = \mathbf{\kappa}_{ heta} - \mathbf{k}_{ heta}^\mathsf{T} \mathbf{K}_{ heta}^{-1} \mathbf{k}_{ heta} \,,$$

• The joint distribution for \mathbf{y}^* at test points $\{\mathbf{x}_m^*\}_{m=1}^M$ and \mathbf{y} :

$$p(\mathbf{y}^{\star},\mathbf{y}) = \mathcal{N}\left(\left[\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array}\right], \left[\begin{array}{cc} \boldsymbol{\kappa}_{\theta} & \mathbf{k}_{\theta}^{\mathsf{T}} \\ \mathbf{k}_{\theta} & \mathbf{K}_{\theta} \end{array}\right]\right)$$

• These matrices are computed from the covariance $C(\cdot, \cdot; \theta)$:

$$\begin{split} [\mathsf{K}_{\theta}]_{n,n'} &= C(\mathsf{x}_n, \mathsf{x}_{n'}; \theta) \\ [\mathsf{k}_{\theta}]_{n,m} &= C(\mathsf{x}_n, \mathsf{x}_m^{\star}; \theta), \qquad [\kappa_{\theta}]_{m,m'} = C(\mathsf{x}_m^{\star}, \mathsf{x}_{m'}^{\star}; \theta), \end{split}$$

• The predictive distribution for \mathbf{y}^* given \mathbf{y} , $p(\mathbf{y}^*|\mathbf{y})$, is:

$$\mathbf{y}^{\star} \sim \mathcal{N}(\mathbf{m}, \mathbf{\Sigma})$$
 $\mathbf{m} = \mathbf{k}_{ heta}^{\mathsf{T}} \mathbf{K}_{ heta}^{-1} \mathbf{y} \,, \qquad \mathbf{\Sigma} = \kappa_{ heta} - \mathbf{k}_{ heta}^{\mathsf{T}} \mathbf{K}_{ heta}^{-1} \mathbf{k}_{ heta} \,,$

• The log of the marginal likelihood, $p(\mathbf{y}|\theta)$, is: $\log p(\mathbf{y}) = -\frac{N}{2}\log 2\pi - \frac{1}{2}\log |\mathbf{K}_{\theta}| - \frac{1}{2}\mathbf{y}^{\mathsf{T}}\mathbf{K}_{\theta}^{-1}\mathbf{y}$

An Example of a Covariance Function

Squared Exponential:

$$\mathcal{C}(\mathbf{x},\mathbf{x}') = \sigma^2 \exp\left\{rac{1}{2}\sum_{j=1}^d \left(rac{x_j - x_j'}{l_j}
ight)^2
ight\}$$

An Example of a Covariance Function

Squared Exponential:
$$C(\mathbf{x}, \mathbf{x}') = \sigma^2 \exp\left\{\frac{1}{2} \sum_{j=1}^d \left(\frac{x_j - x_j'}{l_j}\right)^2\right\}$$

GPs are an easy approach for regression in simple issues

- Non-parametric.
- Bayesian inference is tractable.
- Hyper-parameter tuning by maximizing the marginal likelihood.

GPs are an easy approach for regression in simple issues

- Non-parametric.
- Bayesian inference is tractable.
- Hyper-parameter tuning by maximizing the marginal likelihood.

They also have important problems:

- Scalability: Matrix inversion $(\mathbf{K}_{\theta}^{-1})$ is super costly $(\mathcal{O}(N^3))!$
- Gaussianity: Normal behavior may be too simple for real-world problems!

GPs are an easy approach for regression in simple issues

- Non-parametric.
- Bayesian inference is tractable.
- Hyper-parameter tuning by maximizing the marginal likelihood.

They also have important problems:

- Scalability: Matrix inversion $(\mathbf{K}_{\theta}^{-1})$ is super costly $(\mathcal{O}(N^3))!$
- Gaussianity: Normal behavior may be too simple for real-world problems!

NNs are interesting as well

- Automatic feature representation learning.
- Scale to very large datasets.
- Bayesian inference is intractable.

GPs are an easy approach for regression in simple issues

- Non-parametric.
- Bayesian inference is tractable.
- Hyper-parameter tuning by maximizing the marginal likelihood.

They also have important problems:

- Scalability: Matrix inversion $(\mathbf{K}_{\theta}^{-1})$ is super costly $(\mathcal{O}(N^3))!$
- Gaussianity: Normal behavior may be too simple for real-world problems!

NNs are interesting as well

- Automatic feature representation learning.
- Scale to very large datasets.
- Bayesian inference is intractable.

Can we get the benefits of the two approaches?

Bayesian Neural Networks

Carry out approximate Bayesian inference in neural networks with a finite number of neurons in the space of weights!

Bayesian Neural Networks

Carry out approximate Bayesian inference in neural networks with a finite number of neurons in the space of weights!

Posterior Dist. $p(\mathbf{W}|\text{Data}) = p(\mathbf{W})p(\text{Data}|\mathbf{W})/p(\text{Data})$ Predictive Dist. $p(y|\text{Data}, x) = \int p(y|\mathbf{W}, x)p(\mathbf{W}|\text{Data})d\mathbf{W}$

Bayesian Neural Networks

Carry out approximate Bayesian inference in neural networks with a finite number of neurons in the space of weights!

Posterior Dist. $p(\mathbf{W}|\text{Data}) = p(\mathbf{W})p(\text{Data}|\mathbf{W})/p(\text{Data})$ Predictive Dist. $p(y|\text{Data}, x) = \int p(y|\mathbf{W}, x)p(\mathbf{W}|\text{Data})d\mathbf{W}$

How do we approximate these quantities?

Used to find the parameters of a distribution q, so that it looks similar to some target distribution p, known up to the normalization constant.

Used to find the parameters of a distribution q, so that it looks similar to some target distribution p, known up to the normalization constant.

It is based on the following **decomposition**:

 $\log p(\mathcal{D}) = \mathcal{L}(q) + \mathsf{KL}(q|p)$

where

Used to find the parameters of a distribution q, so that it looks similar to some target distribution p, known up to the normalization constant.

It is based on the following decomposition:

$$\log p(\mathcal{D}) = \mathcal{L}(q) + \mathsf{KL}(q|p)$$

where

$$\mathcal{L}(q) = \int q(oldsymbol{W}) \log\left\{rac{p(oldsymbol{W},\mathcal{D})}{q(oldsymbol{W})}
ight\} doldsymbol{W} \,, \quad \mathsf{KL}(q||p) = -\int q(oldsymbol{W}) \log\left\{rac{p(oldsymbol{W}|\mathcal{D})}{q(oldsymbol{W})}
ight\} doldsymbol{W} \geq 0$$

Used to find the parameters of a distribution q, so that it looks similar to some target distribution p, known up to the normalization constant.

It is based on the following decomposition:

$$\log p(\mathcal{D}) = \mathcal{L}(q) + \mathsf{KL}(q|p)$$

where

$$\mathcal{L}(q) = \int q(\boldsymbol{W}) \log \left\{ rac{p(\boldsymbol{W},\mathcal{D})}{q(\boldsymbol{W})}
ight\} d\boldsymbol{W} \,, \quad \mathsf{KL}(q||p) = -\int q(\boldsymbol{W}) \log \left\{ rac{p(\boldsymbol{W}|\mathcal{D})}{q(\boldsymbol{W})}
ight\} d\boldsymbol{W} \geq 0$$

 $p(\mathbf{W}, \mathcal{D})$, the product of the prior and the likelihood factors, simplifies with the logarithm and $\mathcal{L}(q)$ is feasible to evaluate.

Decomposition of the Marginal Likelihood

The joint distribution can be expressed as $p(\mathcal{D}, \mathbf{W}) = p(\mathcal{D}|\mathbf{W})p(\mathbf{W})$.

The joint distribution can be expressed as $p(\mathcal{D}, \mathbf{W}) = p(\mathcal{D}|\mathbf{W})p(\mathbf{W})$.

If the likelihood factorizes across data instances (y_i, \mathbf{x}_i) :

$$\mathcal{L} = \sum_{i=1}^{N} \mathbb{E}_{q}[\log p(\mathbf{y}_{i}|\mathbf{W}, \mathbf{x}_{i})] - \mathsf{KL}(q|\mathsf{prior})$$

The joint distribution can be expressed as $p(\mathcal{D}, \mathbf{W}) = p(\mathcal{D}|\mathbf{W})p(\mathbf{W})$.

If the likelihood factorizes across data instances (y_i, \mathbf{x}_i) :

$$\mathcal{L} = \sum_{i=1}^{N} \mathbb{E}_{q}[\log p(\mathbf{y}_{i}|\mathbf{W},\mathbf{x}_{i})] - \mathsf{KL}(q|\mathsf{prior})$$

- Monte Carlo and mini-batches!
- Closed form solution if the prior and q are Gaussian!

The joint distribution can be expressed as $p(\mathcal{D}, \mathbf{W}) = p(\mathcal{D}|\mathbf{W})p(\mathbf{W})$.

If the likelihood factorizes across data instances (y_i, \mathbf{x}_i) :

$$\mathcal{L} = \sum_{i=1}^{N} \mathbb{E}_{q}[\log p(\mathbf{y}_{i}|\mathbf{W},\mathbf{x}_{i})] - \mathsf{KL}(q|\mathsf{prior})$$

- Monte Carlo and mini-batches!
- Closed form solution if the prior and q are Gaussian!

Stochastic optimization techniques enable VI on deep neural networks and massive datasets!

Approximate Inference in Weight Space

The posterior distribution is very complicated and *q* is often parametric and assumes independence!

Approximate Inference in Weight Space

The posterior distribution is very complicated and *q* is often parametric and assumes independence!

Approximate Inference in Weight Space

The posterior distribution is very complicated and *q* is often parametric and assumes independence!

Undesirable behavior as more units or layers are added!

(Sun et al., 2019)

Why use the function space?

Benefits:

- 1 Avoids symmetric modes in the posterior of parameter space!
- 2 May potentially give better predictions and uncertainty estimates.
- **3** May consider more flexible priors than GPs.
- 4 Avoids pathologies related to the size of the inference problem!

Why use the function space?

Benefits:

- 1 Avoids symmetric modes in the posterior of parameter space!
- 2 May potentially give better predictions and uncertainty estimates.
- 3 May consider more flexible priors than GPs.
- 4 Avoids pathologies related to the size of the inference problem!

Approximate inference is challenging since it involves working with random functions rather than with finite sets of variables!

Implicit Processes

Collection of random variables $f(\cdot)$, such that any finite collection $\{f(\mathbf{x}_1), \ldots, f(\mathbf{x}_n)\}$ has joint distribution defined by the generative process:

$$\mathbf{z} \sim p(\mathbf{z}), \qquad \qquad f(\mathbf{x}_n) = g_{\theta}(\mathbf{x}_n, \mathbf{z}).$$

Implicit Processes

Collection of random variables $f(\cdot)$, such that any finite collection $\{f(\mathbf{x}_1), \ldots, f(\mathbf{x}_n)\}$ has joint distribution defined by the generative process:

$$\mathbf{z} \sim p(\mathbf{z}), \qquad \qquad f(\mathbf{x}_n) = g_{\theta}(\mathbf{x}_n, \mathbf{z}).$$

Bayesian neural networks: $\theta \Rightarrow$ means and variances of **W**

$$\mathbf{W} \sim \mathcal{N}(\mathbf{W}|\mathbf{0},\mathbf{I}), \qquad \qquad f(\mathbf{x}) = g_{\theta}(\mathbf{W},\mathbf{x}),$$

Neural sampler: $\theta \Rightarrow$ weights of non-linear function $g_{\theta}(\cdot, \cdot)$.
Implicit Processes

Collection of random variables $f(\cdot)$, such that any finite collection $\{f(\mathbf{x}_1), \ldots, f(\mathbf{x}_n)\}\$ has joint distribution defined by the generative process:

$$\mathbf{z} \sim p(\mathbf{z}), \qquad \qquad f(\mathbf{x}_n) = g_{\theta}(\mathbf{x}_n, \mathbf{z}).$$

Bayesian neural networks: $\theta \Rightarrow$ means and variances of W

$$\mathbf{W} \sim \mathcal{N}(\mathbf{W}|\mathbf{0},\mathbf{I}), \qquad \qquad f(\mathbf{x}) = g_{\theta}(\mathbf{W},\mathbf{x}),$$

Neural sampler: $\theta \Rightarrow$ weights of non-linear function $g_{\theta}(\cdot, \cdot)$.

Learning under Implicit Process Priors

Ideally we would like to satisfy two goals:

- **1** Find a flexible approximation for the posterior distribution.
- **2** Train the model's prior parameters θ .

Learning under Implicit Process Priors

Ideally we would like to satisfy two goals:

- **1** Find a flexible approximation for the posterior distribution.
- **2** Train the model's prior parameters θ .

Two approaches in the literature:

- 1 Variational Implicit Process (Ma et al., 2019).
 - Learns θ , but with Gaussian predictions
- 2 Functional Bayesian Neural Network (Sun et al., 2019).
 - Flexible implicit predictive distributions, but cannot learn θ .

Learning under Implicit Process Priors

Ideally we would like to satisfy two goals:

- **1** Find a flexible approximation for the posterior distribution.
- **2** Train the model's prior parameters θ .

Two approaches in the literature:

- 1 Variational Implicit Process (Ma et al., 2019).
 - Learns θ , but with Gaussian predictions
- 2 Functional Bayesian Neural Network (Sun et al., 2019).
 - Flexible implicit predictive distributions, but cannot learn θ .

Inference with IPs and inducing points

Implicit process $f(\mathbf{x}) = h_{\phi}(\mathbf{x}, \epsilon)$ as approximate implicit posterior distribution of the process specified in the prior (as in *FBNNs*)

Approximate Inference via functional variational inference (f-ELBO):

$$\mathcal{L}(q) = \sum_{i=1}^{N} \mathbb{E}_{q}[\log p(y_{i}|f(\mathbf{x}_{i}))] - \mathsf{KL}(q|\mathsf{prior}).$$

Inference with IPs and inducing points

Implicit process $f(\mathbf{x}) = h_{\phi}(\mathbf{x}, \epsilon)$ as approximate implicit posterior distribution of the process specified in the prior (as in *FBNNs*)

Approximate Inference via functional variational inference (*f-ELBO*):

$$\mathcal{L}(q) = \sum_{i=1}^{N} \mathbb{E}_{q}[\log p(y_{i}|f(\mathbf{x}_{i}))] - \mathsf{KL}(q|\mathsf{prior}).$$

Challenges:

1 Avoid increasing the number of latent variables with N (as GPs)

- $M \ll N$ inducing points ($\overline{\mathbf{X}}$, u)
- 2 Compute the conditional posterior (intractable)
 - MonteCarlo GP approximation for the posterior approximation $p(\mathbf{f}|\mathbf{u})$ (as in *VIPs*)

Training the system

Our posterior approximation becomes

 $q(\mathbf{f},\mathbf{u}) = p_{\theta}(\mathbf{f}|\mathbf{u})q_{\phi}(\mathbf{u})$

The variational inference objective is:

$$egin{aligned} \mathcal{L}(q) &= \mathbb{E}_q \left[\log rac{p(\mathbf{y}|\mathbf{f}) p_{ heta}(\mathbf{f}|\mathbf{u}) p_{ heta}(\mathbf{u})}{p_{ heta}(\mathbf{f}|\mathbf{u}) q_{\phi}(\mathbf{u})}
ight] \ &= \sum_{i=1}^N \mathbb{E}_{q_{\phi, heta}}[\log p(y_i|f_i)] - \mathsf{KL}(q_{\phi}(\mathbf{u})|p_{ heta}(\mathbf{u})) \end{aligned}$$

Training the system

Our posterior approximation becomes

 $q(\mathbf{f},\mathbf{u}) = p_{\theta}(\mathbf{f}|\mathbf{u})q_{\phi}(\mathbf{u})$

The variational inference objective is:

$$egin{aligned} \mathcal{L}(q) &= \mathbb{E}_q \left[\log rac{p(\mathbf{y}|\mathbf{f}) p_{ heta}(\mathbf{f}|\mathbf{u}) p_{ heta}(\mathbf{u})}{p_{ heta}(\mathbf{f}|\mathbf{u}) q_{\phi}(\mathbf{u})}
ight] \ &= \sum_{i=1}^N \mathbb{E}_{q_{\phi, heta}}[\log p(y_i|f_i)] - \mathsf{KL}(q_{\phi}(\mathbf{u})|p_{ heta}(\mathbf{u})) \end{aligned}$$

KL-divergence is **intractable** (**implicit** q and p) \Rightarrow **classifier** to estimate the log-ratio inside the KL-divergence:

$$\mathsf{KL}(q_{\phi}(\mathbf{u})|p_{\theta}(\mathbf{u})) = -\mathbb{E}_{q}\left[\log\frac{p_{\theta}(\mathbf{u})}{q_{\phi}(\mathbf{u})}\right] = -\mathbb{E}_{q}\left[\mathcal{T}_{\Omega^{\star}}(\mathbf{u})\right]$$

 $T_{\Omega^{\star}}(\mathbf{u}) \Rightarrow \text{Optimized DNN discriminating samples of } q_{\phi}(\mathbf{u}) \text{ and } p_{\theta}(\mathbf{u})$

Conditional Distribution and Predictions

It is critical to compute $p_{\theta}(\mathbf{f}|\mathbf{u})$ in the model.

Conditional Distribution and Predictions

It is critical to compute $p_{\theta}(\mathbf{f}|\mathbf{u})$ in the model.

Approximated using a GP (as in VIP)

$$\mathbb{E}[f(\mathbf{x})] = m^{\star}_{MLE}(\mathbf{x}) + \mathbf{K}_{\mathbf{f},\mathbf{u}}(\mathbf{K}_{\mathbf{u},\mathbf{u}} + \mathbf{I}\sigma^2)^{-1}(\mathbf{u} - m^{\star}_{\mathsf{MLE}}(\mathbf{X})),$$

$$\mathsf{Var}(f(\mathbf{x})) = \mathbf{K}_{\mathbf{f},\mathbf{f}} - \mathbf{K}_{\mathbf{f},\mathbf{f}}(\mathbf{K}_{\mathbf{u},\mathbf{u}} + \mathbf{I}\sigma^2)^{-1}\mathbf{K}_{\mathbf{u},\mathbf{f}}$$

Covariances \Rightarrow Monte Carlo methods by sampling from the prior

Predictions can also be approximated by Monte Carlo:

$$p(f(\mathbf{x}_*)|\mathbf{y},\mathbf{X}) pprox rac{1}{S} \sum_{s=1}^{S} p_{ heta}(f(\mathbf{x}_*)|\mathbf{u}_s), \qquad \mathbf{u} \sim q_{\phi}(\mathbf{u}),$$

Flexibility of the prior functions

Synthetic data with different features to test the functions the prior is able to learn

Predictive distribution and results

Flexible final predictions in different synthetic datasets

Evolution of the inducing points

Inducing points tend to gather in the regions where data changes most The data here follows a constant function first, and suddenly change into a sine function

• The matching point between both behaviors tend to have more concentration of IPs (M = 50)

Conclusions

- Gaussian Processes and Bayesian neural networks provide partial solutions for estimating uncertainty in the predictions.
 - GPs: simple and work fine for small data, but have flexibility and scalability problems
 - Sparse GPs: scalable, but predictions remain only Gaussian
 - BNNs: intractable inference and issues in the optimization procedure
- Approximate inference in function space may be advantageous over weight space
- Implicit processes are a difficult but very useful tool to deal with all these issues
 - Availability to learn the hyperparameters θ (*IP* prior) \checkmark
 - Flexibility in the posterior approximation (*IP* model NS) with mixture of Gaussians predictions ⇒ General predictive dist. ✓
 - Scalability in memory $(\mathcal{O}(M^3))$ and convergence time \checkmark

Thank you for your attention!

References

- Ma, C., Li, Y., Hernández-Lobato, J. M. Variational implicit processes. International Conference on Machine Learning, 2019.
- Titsias, M. (2009, April). Variational learning of inducing variables in sparse Gaussian processes. In Artificial Intelligence and Statistics (pp. 567-574).
- Snelson, E. and Ghahramani, Z. Sparse Gaussian processes using pseudo-inputs. NIPS 18, pp. 1257-1264, 2006.
- S. Sun, G. Zhang, J. Shi, R. Grosse. Functional Variational Bayesian Neural Networks. International Conference on Learning Representations, 2019.
- Mescheder, L., Nowozin, S., Geiger, A. Adversarial variational bayes: Unifying variational autoencoders and generative adversarial networks. International Conference on Machine Learning, 2017.
- Williams, C. K. I. and Barber, D. Bayesian classification with Gaussian processes. IEEE PAMI, 20,1342-1351, 1998.