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First of all... Why all this?

Modern machine learning → mostly centered on point-wise predictions

Estimate the uncertainty of the predictions → Bayesian approach
in the model formulation

Computing p(Data) is intractable! ⇒ different approximate solutions,
such as BNNs (VI, EP, AVB, etc.) or GPs

Non-paremetric approaches s.a. GPs could help ease our job
(real-world problems are complicated!)

→ Intrinsic advantages and issues!
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Ideal case

We would like a model capable capable of:

1 Producing flexible predictive distributions so it’s useful in many
different problems (reproduce exotic behavior s.a. bimodality,
heterocedasticity, etc.)

2 Bayesian approach ⇒ Sensibly update the prior w.r.t. the
training data

3 Being scalable to large datasets

Stablished methods ⇒ lack some properties, while exceed at others

Could we combine some of them to improve overall?
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Brief mention of kernel methods

• Widespread models based on learning kernel functions
• Instance based methods ⇒ Learn parameters for each training

data point (must remember these)
• Predictions ⇒ Similarity function k(·, ·) between train and test

points (kernel)
• Kernel can be decomposed by a feature space mapping φ(·)

k(x , x ′) = φ(x)Tφ(x ′)

• Many different
kernels to choose
from

• Flexible
approach ⇒
many different
usages (SVMs,
GPs, PCA...)
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Approximate inference and GPs

Challenges: Non-parametric models would simplify our job (problems
can be complex!) and computing p(Data) is intractable!

Hint: One (vanilla) solution is simply setting p(W) ∼ N (W|0, σ2I)
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Gaussian Processes

GPs: Distribution over functions f (·) so that for any finite {xi}Ni=1,
(f (x1), . . . , f (xN))T follows an N-dimensional Gaussian distribution.

Regression with GPs

ŷi = yi + εi , with p(y) = N (y|0,K), εi ∼ N (0, β−1)

Due to Gaussian form, there are closed-form solutions for many useful
questions about finite data!
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Gaussian Processes
• The joint distribution for y? at test points {x?m}Mm=1 and y:

p(y?, y) = N
([

0
0

]
,

[
κθ kT

θ

kθ Kθ

])

• These matrices are computed from the covariance C (·, ·; θ):

[Kθ]n,n′ = C (xn, xn′ ; θ)

[kθ]n,m = C (xn, x
?
m; θ) , [κθ]m,m′ = C (x?m, x

?
m′ ; θ) ,

• The predictive distribution for y? given y, p(y?|y), is:

y? ∼ N (m,Σ)

m = kT
θ K−1

θ y , Σ = κθ − kT
θ K−1

θ kθ ,

• The log of the marginal likelihood, p(y|θ), is:

log p(y) = −N

2
log 2π − 1

2
log |Kθ| −

1

2
yTK−1

θ y
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An Example of a Covariance Function

Squared Exponential: C (x, x′) = σ2 exp

1

2

d∑
j=1

(
xj − x ′j

lj

)2
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From the Prior to the Posterior

GP regression provides a closed-form posterior distribution for f (·).

Ground Truth
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Some issues with GPs

GPs are an easy approach for regression in simple issues
• Non-parametric.

• Bayesian inference is tractable.

• Hyper-parameter tuning by maximizing the marginal likelihood.

They also have important problems:
• Scalability: Matrix inversion (K−1

θ ) is super costly (O(N3))!

• Gaussianity: Normal behavior may be too simple for real-world
problems!

NNs are interesting as well
• Automatic feature representation learning.

• Scale to very large datasets.

• Bayesian inference is intractable.

Can we get the benefits of the two approaches?

10 / 27



Some issues with GPs

GPs are an easy approach for regression in simple issues
• Non-parametric.

• Bayesian inference is tractable.

• Hyper-parameter tuning by maximizing the marginal likelihood.

They also have important problems:
• Scalability: Matrix inversion (K−1

θ ) is super costly (O(N3))!

• Gaussianity: Normal behavior may be too simple for real-world
problems!

NNs are interesting as well
• Automatic feature representation learning.

• Scale to very large datasets.

• Bayesian inference is intractable.

Can we get the benefits of the two approaches?

10 / 27



Some issues with GPs

GPs are an easy approach for regression in simple issues
• Non-parametric.

• Bayesian inference is tractable.

• Hyper-parameter tuning by maximizing the marginal likelihood.

They also have important problems:
• Scalability: Matrix inversion (K−1

θ ) is super costly (O(N3))!

• Gaussianity: Normal behavior may be too simple for real-world
problems!

NNs are interesting as well
• Automatic feature representation learning.

• Scale to very large datasets.

• Bayesian inference is intractable.

Can we get the benefits of the two approaches?

10 / 27



Some issues with GPs

GPs are an easy approach for regression in simple issues
• Non-parametric.

• Bayesian inference is tractable.

• Hyper-parameter tuning by maximizing the marginal likelihood.

They also have important problems:
• Scalability: Matrix inversion (K−1

θ ) is super costly (O(N3))!

• Gaussianity: Normal behavior may be too simple for real-world
problems!

NNs are interesting as well
• Automatic feature representation learning.

• Scale to very large datasets.

• Bayesian inference is intractable.

Can we get the benefits of the two approaches?
10 / 27



Bayesian Neural Networks

Carry out approximate Bayesian inference in neural networks with
a finite number of neurons in the space of weights!

How do we approximate these quantities?

11 / 27



Bayesian Neural Networks

Carry out approximate Bayesian inference in neural networks with
a finite number of neurons in the space of weights!

How do we approximate these quantities?

11 / 27



Bayesian Neural Networks

Carry out approximate Bayesian inference in neural networks with
a finite number of neurons in the space of weights!

How do we approximate these quantities?

11 / 27



Variational Inference - a quick reminder

Used to find the parameters of a distribution q, so that it looks similar
to some target distribution p, known up to the normalization constant.

It is based on the following decomposition:

log p(D) = L(q) + KL(q|p)

where

L(q) =
∫

q(W ) log

{
p(W,D)
q(W)

}
dW , KL(q||p) = −

∫
q(W) log

{
p(W|D)
q(W)

}
dW ≥ 0

p(W,D), the product of the prior and the likelihood factors, simplifies
with the logarithm and L(q) is feasible to evaluate.
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Decomposition of the Marginal Likelihood

ln
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Maximization of the Lower Bound

The joint distribution can be expressed as p(D,W) = p(D|W)p(W).

If the likelihood factorizes across data instances (yi , xi ):

L =
∑N

i=1Eq[log p(yi |W, xi )] − KL(q|prior)

• Monte Carlo and mini-batches!

• Closed form solution if the prior and q are Gaussian!

Stochastic optimization techniques enable VI on deep neural
networks and massive datasets!
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Approximate Inference in Weight Space

The posterior distribution is very complicated and q is often
parametric and assumes independence!

Undesirable behavior as more units or layers are added!

(Sun et al., 2019)
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Why use the function space?

Benefits:

1 Avoids symmetric modes in the posterior of parameter space!

2 May potentially give better predictions and uncertainty estimates.

3 May consider more flexible priors than GPs.

4 Avoids pathologies related to the size of the inference problem!

Approximate inference is challenging since it involves working with
random functions rather than with finite sets of variables!
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Implicit Processes

Collection of random variables f (·), such that any finite collection
{f (x1), . . . , f (xn)} has joint distribution defined by the generative
process:

z ∼ p(z) , f (xn) = gθ(xn, z) .

Bayesian neural networks: θ ⇒ means and variances of W

W ∼N (W|0, I) , f (x) = gθ(W, x) ,

Neural sampler: θ ⇒ weights of non-linear function gθ(·, ·).

Neural sampler Prior samples
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Neural sampler Prior samples
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Learning under Implicit Process Priors

Ideally we would like to satisfy two goals:

1 Find a flexible approximation for the posterior distribution.

2 Train the model’s prior parameters θ.

Two approaches in the literature:

1 Variational Implicit Process (Ma et al., 2019).
• Learns θ, but with Gaussian predictions

2 Functional Bayesian Neural Network (Sun et al., 2019).
• Flexible implicit predictive distributions, but cannot learn θ.
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Inference with IPs and inducing points

Implicit process f (x) = hφ(x, ε) as approximate implicit posterior
distribution of the process specified in the prior (as in FBNNs)

Approximate Inference via functional variational inference (f-ELBO):

L(q) =
N∑
i=1

Eq[log p(yi |f (xi ))]− KL(q|prior) .

Challenges:

1 Avoid increasing the number of latent variables with N (as GPs)
• M � N inducing points (X, u)

2 Compute the conditional posterior (intractable)
• MonteCarlo GP approximation for the posterior approximation

p(f|u) (as in VIPs)
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Training the system

Our posterior approximation becomes

q(f,u) = pθ(f|u)qφ(u)

The variational inference objective is:

L(q) = Eq

[
log

p(y|f)����pθ(f|u)pθ(u)

����pθ(f|u)qφ(u)

]
=

N∑
i=1

Eqφ,θ [log p(yi |fi )]− KL(qφ(u)|pθ(u))

KL-divergence is intractable (implicit q and p) ⇒ classifier to estimate
the log-ratio inside the KL-divergence:

KL(qφ(u)|pθ(u)) = −Eq

[
log

pθ(u)

qφ(u)

]
= −Eq [TΩ?(u)]

TΩ?(u) ⇒ Optimized DNN discriminating samples of qφ(u) and pθ(u)
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Conditional Distribution and Predictions

It is critical to compute pθ(f|u) in the model.

Approximated using a GP (as in VIP)

E[f (x)] = m?
MLE (x) + Kf,u(Ku,u + Iσ2)−1(u−m?

MLE(X)) ,

Var(f (x)) = Kf,f −Kf,f(Ku,u + Iσ2)−1Ku,f

Covariances ⇒ Monte Carlo methods by sampling from the prior

Predictions can also be approximated by Monte Carlo:

p(f (x∗)|y,X) ≈ 1

S

S∑
s=1

pθ(f (x∗)|us) , u ∼ qφ(u) .
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Flexibility of the prior functions

Synthetic data with different features to test the functions the prior is
able to learn
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Predictive distribution and results

Flexible final predictions in different synthetic datasets
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Evolution of the inducing points

Inducing points tend to gather in the regions where data changes most
The data here follows a constant function first, and suddenly change into
a sine function

• The matching point between both behaviors tend to have more

concentration of IPs (M = 50)
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Conclusions

1 Gaussian Processes and Bayesian neural networks provide partial
solutions for estimating uncertainty in the predictions.
• GPs: simple and work fine for small data, but have flexibility and

scalability problems

• Sparse GPs: scalable, but predictions remain only Gaussian

• BNNs: intractable inference and issues in the optimization procedure

2 Approximate inference in function space may be advantageous over
weight space

3 Implicit processes are a difficult but very useful tool to deal with all
these issues
• Availability to learn the hyperparameters θ (IP prior) X
• Flexibility in the posterior approximation (IP model - NS) with

mixture of Gaussians predictions ⇒ General predictive dist. X
• Scalability in memory (O(M3)) and convergence time X
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Thank you for your attention!
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