Bayes in Al 4.1 ('Small') PGMs and (shallow) NNs

David Ríos Insua \& Roi Naveiro

david.rios@icmat.es roi.naveiro@icmat.es

Objectives

Earlier sessions

1. Bayes or die
2. MCMC
3. Large scale Bayes: VB and SGMCMC Today
4.1 Bayes in AI: (small) PGMs and (shallow) NNs david.rios@icmat.es
4.2 GPs and Bayesian NNs in function spaces simon.rodriguez@icmat.es
4.3 Modern research in ML roi.naveiro@icmat.es

PGMs. Motivation

Motivation

- Simple way to visualize structure of probabilistic models
- Designing and motivating new models
- Understanding properties like conditional independence
- Complex computations viewed through simple graphical manipulations
- Explainable and interpretable
- Deep belief nets in deep learning

Concept

$$
p(\mathbf{x})=\prod_{i} p\left(\mathrm{x}_{i} \mid P a_{\mathcal{G}}\left(\mathrm{x}_{i}\right)\right)
$$

$$
\tilde{p}(\mathbf{x})=\Pi_{\mathcal{C} \in \mathcal{G}} \phi(\mathcal{C})
$$

$p(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e})=p(\mathrm{a}) p(\mathrm{~b} \mid \mathrm{a}) p(\mathrm{c} \mid \mathrm{a}, \mathrm{b}) p(\mathrm{~d} \mid \mathrm{b}) p(\mathrm{e} \mid \mathrm{c})$

Bayesian networks. Directed, Acyclic

Markov fields. Undirected

Probabilistic graphical models. Directed Bayesian networks

Directed PGMs

As basic tools for qualitative modelling of uncertainty use probabilistic influence diagrams a.k.a. causal networks, Bayesian networks, Belief networks,.... See the excellent
http://en.wikipedia.org/wiki/Bayesian network

They are influence diagrams with chance nodes only. Qualitatively they describe a probabilistic model through

$$
P(A 1, A 2, \ldots ., A n)=P(A 1 \mid \operatorname{ant}(A 1)) \ldots . . P(A n \mid \operatorname{ant}(A n))
$$

where ant (Ai) are the antecessors of node Ai.

In what follows we see several PIDs and we need to indicate the entailed probabilistic model

Probabilistic diagrams with three nodes

Before moving foreward, write the entailed probabilistic model

Probabilistic diagrams with three nodes

Model $\quad P(A, B, C)$

$P(A) P(B) P(C)$
$P(A) P(B \mid A) P(C)$
$P(A) P(B \mid A) P(C \mid A, B)$
$P(A) P(B \mid A) P(C \mid B)$
First case, independence. Third case, A and C are conditionally independent given B.
Read http://en.wikipedia.org/wiki/Conditional independence

The hidden info

$$
P(A, B, C, D, E)=P(A) P(B \mid A) P(C \mid A) P(D \mid B, C) P(E \mid C)
$$

Probabilistic diagrams. Asia

An example referring to lung diseases

A breathing condition (dyspnea) may be due to tuberculosis, lung cancer or bronchitis, none of them or several of them. A recent visit to Asia, increases the chances of tuberculosis, whereas smoking is a risk factor for lung cancer and bronchitis. The results of an X-ray may not discriminate between cancer and tuberculosis, as neither the presence or absence of dyspnea does.

Probabilistic diagrams

An example referring to lung diseases:

A breathing condition (dyspnea) may be due to tuberculosis, lung cancer or bronchitis, none of them or several of them. A recent visit to Asia, increases the chances of tuberculosis, whereas smoking is a risk factor for lung cancer and bronchitis. The results of an X-ray may not discriminate between cancer and tuberculosis, as neither the presence or absence of dyspnea does.

Probabilistic diagrams

An example referring to lung diseases

A breathing condition (dyspnea) may be due to tuberculosis, lung cancer or bronchitis, none of them or several of them. A recent visit to Asia, increases the chances of tuberculosis, whereas smoking is a risk factor for lung cancer and bronchitis. The results of an X-ray may not discriminate between cancer and tuberculosis, as neither the presence or absence of dyspnea does.

Probabilistic diagrams

$P(A, T, S, L, B, O, X, D)=P(A) P(T \mid A) P(S) P(L \mid S) P(B \mid S) P(0 \mid T, L) P(X \mid O) P(D \mid O, B)$

Hypertension

Runway excursions at airports

Build the probabilistic model

National security

Build the probabilistic model

Statistical models as PGMs. Hierarchical models

National aviation safety plan

Inference in graphical models

General problem

Assuming DAG (arcs and distributions at nodes):

1. Initialisation
2. Absorption of evidence
3. Global propagation of evidence
4. Hypothesising and propagating single pieces of evidence
5. Planning
6. Influential findings

Gibbs sampler for belief nets

Conditionals

$$
P\left(X_{j}=x_{j} \mid X_{-j}=x_{-j}\right)=\alpha P\left(X_{j}=x_{j} \mid \Pi_{X_{j}}\left(x_{-j}\right)\right) \prod_{Y_{j} \in S_{j}} P\left(Y_{j}=y_{j} \mid \Pi_{Y_{j}}\left(x_{j}\right)\right)
$$

Back to example

$$
P(A, B, C, D, E)=P(A) P(B \mid A) P(C \mid A) P(D \mid B, C) P(E \mid C)
$$

$$
P(c \mid \bar{d}, e)=0.0287
$$

Back to example

$$
\begin{aligned}
& P(A \mid B, C, \bar{d}, e)=P\left(A \mid x_{-A}\right)=\alpha_{1} P(A) P(B \mid A) P(C \mid A) \\
& P(B \mid A, C, \bar{d}, e)=P\left(B \mid x_{-B}\right)=\alpha_{2} P(B \mid A) P(\bar{d} \mid B, C) \\
& P(C \mid A, B, \bar{d}, e)=P\left(C \mid x_{-C}\right)=\alpha_{3} P(C \mid A) P(\bar{d} \mid B, C) P(e \mid C)
\end{aligned}
$$

Seleccionar $B=b_{0}, C=c_{0}$ arbitrariamente
Hacer $j=1$
Mientras no se juzgue convergencia,
Generar $A_{j}=a_{j} \sim P\left(A \mid x_{-A}\right)=\alpha_{1 j} P(A) P\left(b_{j-1} \mid A\right) P\left(c_{j-1} \mid A\right)$
Generar $B_{j}=b_{j} \sim P\left(B \mid x_{-B}\right)=\alpha_{2 j} P\left(B \mid a_{j}\right) P\left(\bar{d} \mid B, c_{j-1}\right)$
Generar $C_{j}=c_{j} \sim P\left(C \mid x_{-C}\right)=\alpha_{3 j} P\left(C \mid a_{j}\right) P\left(\bar{d} \mid b_{j}, C\right) P(e \mid C)$
$\frac{\#\left\{C_{j}=c\right\}}{M}$
Hacer $j=j+1$

Sequential Decisions

Learning structure from data: Structure learning. Greedy search based on a scoring function based on an information measure Learning node distributions....
Deep belief nets
GeNIe
https://www.bayesfusion.com/influence-diagrams/
https://download.bayesfusion.com/files.html?category=Academia

Shallow neural nets

Formulation

$$
\begin{aligned}
y= & \sum_{j=1}^{m} \beta_{j} \psi\left(x^{\prime} \gamma_{j}\right)+\epsilon \\
& \epsilon \sim N\left(0, \sigma^{2}\right), \\
& \psi(\eta)=\exp (\eta) /(1+\exp (\eta))
\end{aligned}
$$

Input Layer $\in \mathbb{R}^{n}$

Linear in beta's, nonlinear in gamma's

Training

Given training data, maximise log-likelihood

$$
\min _{\beta, \gamma} f(\beta, \gamma)=\sum_{i=1}^{n} f_{i}(\beta, \gamma)=\sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{m} \beta_{j} \psi\left(x_{i}^{\prime} \gamma_{j}\right)\right)^{2}
$$

Gradient descent

Backpropagation to estimate gradient

Training with regularisation

$$
\begin{aligned}
& \min _{\beta, \gamma} f(\beta, \gamma)=\sum_{i=1}^{n} f_{i}(\beta, \gamma)=\sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{m} \beta_{j} \psi\left(x_{i}^{\prime} \gamma_{j}\right)\right)^{2} \\
& \min g(\beta, \gamma)=f(\beta, \gamma)+h(\beta, \gamma)
\end{aligned}
$$

Weight decay

$$
h(\beta, \gamma)=\lambda_{1} \sum \beta_{i}^{2}+\lambda_{2} \sum \sum \gamma_{j i}^{2}
$$

Ridge

Bayesian analysis of shallow neural nets (fixed arch)

$$
\begin{gathered}
y=\sum_{j=1}^{m} \beta_{j} \psi\left(x^{\prime} \gamma_{j}\right)+\epsilon \\
\epsilon \sim N\left(0, \sigma^{2}\right), \\
\psi(\eta)=\exp (\eta) /(1+\exp (\eta)) \\
\beta_{1} \sim N\left(\mu_{\beta}, \sigma_{\beta}^{2}\right) \text { and } \gamma_{1} \sim N\left(\mu_{\gamma}, S_{\gamma}^{2}\right) \\
\mu_{\beta} \sim N\left(a_{\beta}, A_{\beta}\right), \mu_{\gamma} \sim N\left(a_{\gamma}, A_{\gamma}\right), \sigma_{\beta}^{-2} \sim \operatorname{Gamma}\left(c_{b} / 2, c_{b} C_{b} / 2\right) \\
S_{\gamma}^{-1} \sim W i s h\left(c_{\gamma},\left(c_{\gamma} C_{\gamma}\right)^{-1}\right) \text { and } \sigma^{-2} \sim \operatorname{Gamma}(s / 2, s S / 2)
\end{gathered}
$$

Bayesian analysis of shallow neural nets (fixed arch)

```
1 Start with arbitrary ( }\beta,\gamma,\nu)\mathrm{ .
2 while not convergence do
3 Given current (\gamma,\nu), draw \beta from }p(\beta|\gamma,\nu,y)\mathrm{ (a multivariate normal).
4 for }j=1,\ldots,m\mathrm{ , marginalizing in }\beta\mathrm{ and given }\nu\mathrm{ do
5 Generate a candidate }\mp@subsup{\tilde{\gamma}}{j}{}~\mp@subsup{g}{j}{}(\mp@subsup{\gamma}{j}{})
6 Compute a(\gamma,},\mp@subsup{\tilde{\gamma}}{j}{})=\operatorname{min}(1,\frac{p(D|,\mp@subsup{\overline{\gamma}}{,}{\prime})}{p(D|,\gamma,\nu)}) with \tilde{\gamma}=(\mp@subsup{\gamma}{1}{},\mp@subsup{\gamma}{2}{},\ldots,\mp@subsup{\tilde{\gamma}}{i}{},\ldots,\mp@subsup{\gamma}{m}{})
7 With probability a( }\mp@subsup{\gamma}{j}{},\mp@subsup{\tilde{\gamma}}{j}{})\mathrm{ replace }\mp@subsup{\gamma}{j}{}\mathrm{ by }\mp@subsup{\tilde{\gamma}}{j}{}\mathrm{ . If not, preserve }\mp@subsup{\gamma}{j}{}\mathrm{ .
8 end
9 Given }\beta\mathrm{ and }\gamma\mathrm{ , replace }\nu\mathrm{ based on their posterior conditionals:
10 p( }\mp@subsup{\mu}{\beta}{}|\beta,\mp@subsup{\sigma}{\beta}{})\mathrm{ is normal; }p(\mp@subsup{\mu}{\gamma}{}|\gamma,\mp@subsup{S}{\gamma}{})\mathrm{ , multivariate normal; }p(\mp@subsup{\sigma}{\beta}{-2}|\beta,\mp@subsup{\mu}{\beta}{})\mathrm{ ,
    Gamma; p(S-1}\mp@subsup{\gamma}{}{-1}|,\mp@subsup{\mu}{\gamma}{})\mathrm{ , Wishart; }p(\mp@subsup{\sigma}{}{-2}|\beta,\gamma,y)\mathrm{ , Gamma.
1 1 \text { end}
```


Bayesian analysis of shallow neural nets (var arch)

$$
\begin{array}{cl}
y= & x_{i}^{\prime} a+\sum_{j=1}^{m^{*}} d_{j} \beta_{j} \psi\left(x^{\prime} \gamma_{j}\right)+\epsilon \\
& \epsilon \sim N\left(0, \sigma^{2}\right), \\
& \psi(\eta)=\exp (\eta) /(1+\exp (\eta)), \\
\operatorname{Pr}\left(d_{j}=k \mid d_{j-1}=1\right) \quad=\quad & (1-\alpha)^{1-k} \times \alpha^{k}, k \in\{0,1\} \\
\beta_{i} \sim N\left(\mu_{b}, \sigma_{\beta}^{2}\right), a \sim N\left(\mu_{a}, \sigma_{a}^{2}\right), & \gamma_{i} \sim N\left(\mu_{\gamma}, \Sigma_{\gamma}\right) .
\end{array}
$$

Concept

Input Layer $\in \mathbb{R}^{n}$
Hidden Layer $\in \mathbb{R}^{4}$
Output Layer $\in \mathbb{R}^{2}$

$$
\begin{aligned}
y= & \sum_{j=1}^{m} \beta_{j} \psi\left(x^{\prime} \gamma_{j}\right)+\epsilon \\
& \epsilon \sim N\left(0, \sigma^{2}\right), \\
& \psi(\eta)=\exp (\eta) /(1+\exp (\eta))
\end{aligned}
$$

(Shallow) Neural nets

Deep neural nets

Bayesian analysis of deep neural nets

1 Start with arbitrary (β, γ, ν).
2 while not convergence do

3	Given current (γ, ν), draw β from $p(\beta \mid \gamma, \nu, y)$ (a multivariate normal).
4	for $j=1, \ldots, m$, marginalizing in β and given ν do
5	\quad Generate a candidate $\gamma_{j} \sim g_{j}\left(\gamma_{j}\right)$.
6	Compute $a\left(\gamma_{j}, \tilde{\gamma}_{j}\right)=\min \left(1, \frac{p(D \mid \gamma, \nu)}{p(D \mid \gamma, \nu)}\right)$ with $\tilde{\gamma}=\left(\gamma_{1}, \gamma_{2}, \ldots, \tilde{\gamma}_{i}, \ldots, \gamma_{m}\right)$.
7	With probability $a\left(\gamma_{j}, \gamma_{j}\right)$ replace γ_{j} by $\tilde{\gamma}_{j}$. If not, preserve γ_{j}.
8	end
9	Given β and γ, replace ν based on their posterior conditionals:
10	$p\left(\mu_{\beta} \mid \beta, \sigma_{\beta}\right)$ is normal; $p\left(\mu_{\gamma} \mid \gamma, S_{\gamma}\right)$, multivariate normal; $p\left(\sigma_{\beta}^{-2} \mid \beta, \mu_{\beta}\right)$,
11 end	

