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My knowledge in chemistry is very (very) basic...






Artificial Intelligence
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TOP 9 TAKEAWAYS

Al investment in drug design and discovery increased significantly: “Drugs, Cancer, Molecular,
Drug Discovery” received the greatest amount of private Al investment in 2020, with more than USD
13.8 billion, 4.5 times higher than 2019.
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The process of discovering new molecules

e Pharma: average time discovery - market, 13 years

e Outside pharma: 25 years m

Stage1
e Crucial 1st step: generate pool of candidates Jiscovery joiag
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The old way and the soon-to-be-old way
e Oldway

o Human experts propose, synthesize and test (in vitro)
e Soon-to-be-old way: high throughput virtual screening (HTVS)

o  Predict properties through computational chemistry...
o ..leverage rapid ML-based property predictions
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De novo molecular design

e Just existing molecules are explored

e Much time lost evaluating bad leads

e Traverse chemical space more “effectively”: reach optimal molecules with less evaluations than
brute-force screening

“De novo molecular design is the process of automatically
proposing novel chemical structures that optimally satisfy

desired properties”

Combinatorial, black-box, stochastic, multi-objective optimization with black-box constraints




Automatically proposing novel chemical structures

Two main ingredients
e Molecule representation

e (Cenerative model



Molecules are 3D QM objects with: nuclei with defined positions surrounded by electrons described by
complex wave-functions

e Digital encoding that serves as input to model
e Uniqueness and invertibility

e Trade-off: information lost vs complexity

o 3D coord. representation (symmetries?)
o More compact 2D (graph) representation NH,

e 1D, 2D and 3D

HO
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Simplified Molecular Input Line Entry System
Molecule as graph (bond length and conformational info is lost) O

Graph traversal Ibuprofen
Sequence of ASCII characters LL(Cytetecalcalit (e O)=0
Non-unique — Canonical SMILES

One-Hot-Encoding

e Leverage NLP techniques

a Canonical representation b Randomized representation

e SMILE-based methods struggle to generate valid g g .
molecules 8 ? v/l
e Valid = valency rules i . 2
i o
® Learn spurious grammar rules o ol 9
11
O OH
12—eipp13

CC (=0)0Oclcececeeclc (=0) 0 clece(ec(eecl)C(0)=0)0C(C)=0



2D representations

OH
Nodes represent atoms
Edges represent bonds =
Nodes/Edges have associated features (atom number, bond type, etc.) |

NS
Capture co-nnecjuwty! . HaC N1
Symmetry invariant representation \H/
o
More difficult to generate than sequences
Taylored algorithms that work with graphs Acetaminophen
(composing transformations on graphs, symmetries?) ﬂ
Graph Neural Nets! - !
o
E g =




3D representations

3D point clouds
M = {z;,r } .
— 1ty 71 Jfj—1 where x; are features and ; are coordinates.
e Minimal information lost (conformational preferences, bond lengths, etc.)

e Symmetries?
e Too many degrees of freedom

e Generation: sequentially choose pair of atoms,
relative position, bond length and angles




Myriad of different ways. A useful distinction:
e Cradient-free methods

e GCradient-based methods



Craph-based genetic algorithms
o Mutations and crossover on a pool of candidates
o Elitist natural selection rule
Yoshikawa et. al. propose using SMILES
o Population of SMILES
o Grammatical Evolution

Many more...
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Recurrent Neural Networks
(Variational) Autoencoders
Normalizing Flows

Generative Adversarial Networks (CANs)



Work on sequences (SMILES) 0
OH
Goal: given training sequences — learn to generate new sequences
that resemble those of training. b
uprofen

CC(C)Cclccc(ccl)C(C)C(0)=0
Sequence: Si.r = (S1,...,97) where S; € V

Training: maximum likelihood, equiv to minimize loss function:

LMLE — _ S S log mo(s¢|Sir-1)

Generation: sequentially sample from multinomial dist.

Thermal rescaling

D; X exp(%)
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e GCoal: learn probabilistic latent variable model for data generation

z ~ p(2)
x ~ py(x|2)

e \We want to maximize p(a:) = fpg (m‘z)p(z)dz; instead maximize

q,(z|x)

P (xIZ)p(Z)}

log p(x)= E, . {log

e RHSisequalto

IIE4j‘,2r\4(1q,5(,z|:1:) [logpﬁ(x|z)] — Dk [q¢ (Z|£B), p(Z)]



Typically: p(z) independent standard normal dist. and ¢, (z|z) factorized multivar. normal
Mean and variance functions of encoder parameterized through CNN.
Decoder normally RNN
Training
o  Encode each training sample x into z
o Decode zinto x’
o Minimize loss function
Generation

o  Get point in latent space z

o Decode zsampling T ~ Pg (a:\z)



Normalizing Flows

Real stant space Reconstructed

3 molecule molecule
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e Learn series of parametric bijective transformations of probability distributions
e Allows (easy) calculation of exact likelihood.

e Deep NN with bijective layers



Generative adversarial network (GAN)

2PNy 2
N o O = O >
9
Training set a
.
-
=, | Discriminator
Generator

Generator: generate molecule from Gaussian noise
Discriminator: distinguish real from fake molecules
Train to compete against each other

mgnmng(D,G) cenl [logD )]

+E__, . [log(l - D(G(z)))}

Real

Fake



Recall that...

“De novo molecular design is the process of automatically
proposing novel chemical structures that optimally satisfy

desired properties”

Combinatorial, black-box, stochastic, multi-objective optimization with black-box constraints




Goal: learn valid molecules with desirable properties
Infeasible to measure properties experimentally for every generated molecule...
Infeasible to use computational chemistry to compute properties...
Prediction: quantitative structure-activity relationship (QSAR)
Done usually in separate datasets
Many models depending on property, representation, etc.

o Molecular Descriptors

o SMILEs
o Graphs



1. Reinforcement Learning coupled with sequence generator

Atimet, stateis (So,---5t)

Action is next token @t = St+1

After taking action, a reward R; is perceived
Goal, learn policy mg(a|s)

maxy E[Zle Rz ’80, (9]

The only non-zero reward is Rrwhich is equal to the property prediction



Using properties to guide generation

2. Optimization with VAE

e Learn map from latent space to property (e.g. through GP)
e Optimize that map (gradient ascent, bayesian optimization, etc.)

SMILES input ©
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Multi-objective optimization

@)

Many properties to be optimized (depending even on different stakeholders!)

Drug discovery: high binding affinity to biological target, low toxicity, solubility, synthetically
accessible, stability, economical costs!

Commonly: predict properties independently and combine predictions in loss function.
Also, hold properties constant implicitly through structural constraints.

Decision theory: multi-attribute utilities to incorporate different objectives for different
stakeholders into the generative process



e Uncertainty quantification
o Models rely on predictions to generate promising molecules
o Accuracy of these models is key
o Insmall data regimes... models tend to be less accurate.
o Incorporate uncertainty quantification into generative process! (Bayesian inference)
o  Exploration vs exploitation (Bayesian optimization)

o Bayesian decision theory



e Synthesizability
o  Generated molecules must be easy to synthesize
o  This concept is hard to define!
o Methods to automatically evaluate synthesizability without human intervention

o Rather than molecules, generate synthetic pathways (learn reactions)



Other relevant fields

Graph based deep learning
Geometric deep learning
Combinatorial black-box optimization
Heuristic search algorithms

Reinforcement Learning



The dream - Closing the loop

Generative and

predictive models % ﬁ

>10% molecules
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& filtering ~ ~102 molecules '
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High throughput
experimental platform




e More likely: computer-aided molecular design
e Interpretability
o  Prediction is not enough, we need understanding (7).
o Chemist need to derive an actionable hypothesis from model output.

o If chemist sees, e.g. structural elements responsible for toxicity, she might have ideas on how to
modify molecule to diminish toxicity

o Interpretable representations: molecular descriptors...?

o Interpretable methods to determine causality between structure presence and property (causal
inference, counterfactual inference)
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Adjacency Matrices




Permutation Invariant representation

O ® Nodes
[0,1; 1,90,
. Edges
e [z 1]
Adjacency List

[[1, 8], [4, 3] ]

Global
0




e (Coal: learn general distribution of molecules in chemical space

e Evaluated based on chemical validity, novelty, uniqueness






