

Machine Learning for *de novo* Molecular Design

Roi Naveiro LifeHub

My knowledge in chemistry is very (very) basic...

Why?

Artificial Intelligence Index Report 2021

TOP 9 TAKEAWAYS

Al investment in drug design and discovery increased significantly: "Drugs, Cancer, Molecular, Drug Discovery" received the greatest amount of private Al investment in 2020, with more than USD 13.8 billion, 4.5 times higher than 2019.

The process of discovering new molecules

- Pharma: average time discovery market, 13 years
- Outside pharma: 25 years
- Crucial 1st step: generate pool of candidates
- Daunting task (e.g. 10²³ 10⁶⁰ drug-like molecules)

The old way and the soon-to-be-old way

- Old way
 - Human experts propose, synthesize and test (*in vitro*)
- Soon-to-be-old way: high throughput virtual screening (HTVS)
 - Predict properties through computational chemistry...
 - ...leverage rapid **ML-based property predictions**

De novo molecular design

- Just existing molecules are explored
- Much time lost evaluating bad leads
- Traverse chemical space more "effectively": reach **optimal molecules** with **less evaluations** than brute-force screening

"De novo molecular design is the process of automatically proposing novel chemical structures that optimally satisfy desired properties"

Combinatorial, black-box, stochastic, multi-objective optimization with black-box constraints

Automatically proposing novel chemical structures

Two main ingredients

- Molecule representation
- Generative model

Representing molecules

Molecules are **3D QM objects** with: nuclei with defined positions surrounded by electrons described by complex wave-functions

- Digital encoding that serves as input to model
- Uniqueness and invertibility
- Trade-off: information lost vs complexity
 - 3D coord. representation (symmetries?)
 - More compact 2D (graph) representation
- 1D, 2D and 3D

1D representations - SMILEs

Simplified Molecular Input Line Entry System

Molecule as graph (bond length and conformational info is lost)

- Graph traversal
- Sequence of ASCII characters
- Non-unique \rightarrow Canonical SMILES
- One-Hot-Encoding
- Leverage NLP techniques
- SMILE-based methods struggle to generate valid molecules
- Valid = valency rules
- Learn spurious grammar rules

 $\label{eq:buprofen} \begin{array}{c} \text{Ibuprofen} \\ \text{CC(C)Cclccc(ccl)C(C)C(0)=0} \end{array}$

CC (=0) Oclccccc1C (=0) 0

clcc(c(ccl)C(0)=0)OC(C)=0

2D representations

- Nodes represent atoms
- Edges represent bonds
- Nodes/Edges have associated features (atom number, bond type, etc.)
- Capture connectivity!
- Symmetry invariant representation
- More difficult to generate than sequences
- Taylored algorithms that work with graphs (composing transformations on graphs, symmetries?)
- Graph Neural Nets!

3D representations

• 3D point clouds

 $\mathcal{M} = \{x_i, r_i\}_{i=1}^p$ where x_i are features and r_i are coordinates.

- Minimal information lost (conformational preferences, bond lengths, etc.)
- Symmetries?
- Too many degrees of freedom
- Generation: sequentially choose pair of atoms, relative position, bond length and angles

How to generate molecules?

Myriad of different ways. A useful distinction:

- Gradient-free methods
- Gradient-based methods

Gradient Free Methods

- Graph-based genetic algorithms
 - Mutations and crossover on a pool of candidates
 - Elitist natural selection rule
- Yoshikawa et. al. propose using SMILES
 - Population of SMILES
 - Grammatical Evolution
- Many more...

Gradient Based Methods

- Recurrent Neural Networks
- (Variational) Autoencoders
- Normalizing Flows
- Generative Adversarial Networks (GANs)

Recurrent Neural Networks

- Work on sequences (SMILES)
- Goal: given training sequences → learn to generate new sequences that resemble those of training.

СССС

- Sequence: $S_{1:T} = (S_1, \dots, S_T)$ where $S_i \in \mathcal{V}$
- Training: maximum likelihood, equiv to minimize loss function:

$$L^{MLE} = -\sum_{s \in \mathcal{T}} \sum_{t=2}^T \log \pi_ heta(s_t | S_{1:T-1}))$$

- Generation: sequentially sample from multinomial dist.
- Thermal rescaling

$${\hat p}_i \propto \exp(rac{p_i}{T})$$

(Variational) Autoencoders

Variational Autoencoders

• Goal: learn probabilistic latent variable model for data generation

$$egin{aligned} z &\sim p(z) \ x &\sim p_{ heta}(x|z) \end{aligned}$$

• We want to maximize $\, p(x) = \int p_ heta(x|z) p(z) dz$; instead maximize

$$\log p(\mathbf{x}) \ge \mathbb{E}_{z \sim q_{\phi}(z|\mathbf{x})} \left[\log \frac{p_{\theta}(\mathbf{x}|\mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \right]$$

• RHS is equal to

$$\mathbb{E}_{z \sim q_{\phi}(z|x)}[\log p_{ heta(x|z)}] - D_{KL}[q_{\phi}(z|x),p(z)]$$

Variational Autoencoders

- Typically: p(z) independent standard normal dist. and $q_{\phi}(z|x)$ factorized multivar. normal
- Mean and variance functions of encoder parameterized through CNN.
- Decoder normally RNN
- Training
 - Encode each training sample x into z
 - Decode z into x'
 - Minimize loss function
- Generation
 - Get point in latent space z
 - \circ Decode z sampling $x \sim p_{ heta}(x|z)$

Normalizing Flows

- Learn series of parametric bijective transformations of probability distributions
- Allows (easy) calculation of exact likelihood.
- Deep NN with bijective layers

Generative Adversarial Networks

- Generator: generate molecule from Gaussian noise
- Discriminator: distinguish real from fake molecules
- Train to compete against each other

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \in p_{d}(\boldsymbol{x})} \left[\log D(\boldsymbol{x}) \right] \\ + \mathbb{E}_{\boldsymbol{z} \in p_{z}(\boldsymbol{z})} \left[\log \left(1 - D(G(\boldsymbol{z})) \right) \right]$$

"De novo molecular design is the process of automatically proposing novel chemical structures that optimally satisfy desired properties"

Combinatorial, black-box, stochastic, multi-objective optimization with black-box constraints

Generate molecules that optimally satisfy desired properties

- Goal: learn valid molecules with **desirable properties**
- Infeasible to measure properties experimentally for every generated molecule...
- Infeasible to use computational chemistry to compute properties...
- **Prediction**: quantitative structure-activity relationship (QSAR)
- Done usually in separate datasets
- Many models depending on property, representation, etc.
 - Molecular Descriptors
 - SMILEs
 - Graphs

Using properties to guide generation

- 1. Reinforcement Learning coupled with sequence generator
 - A time t, state is (s_0, \ldots, s_t)
 - Action is next token $a_t = s_{t+1}$
 - After taking action, a reward R_t is perceived
 - Goal, learn policy $\pi_{ heta}(a|s)$

$$\max_{ heta} \mathbb{E}[\sum_{i=1}^T R_i | s_0, heta]$$

• The only non-zero reward is R_T which is equal to the property prediction

Using properties to guide generation

- 2. Optimization with VAE
 - Learn map from latent space to property (e.g. through GP)
 - Optimize that map (gradient ascent, bayesian optimization, etc.)

Issues/Thoughts

- Multi-objective optimization
 - Many properties to be optimized (depending even on different stakeholders!)
 - Drug discovery: **high binding affinity to biological target**, low toxicity, solubility, synthetically accessible, stability, economical costs!
 - Commonly: predict properties independently and combine predictions in loss function.
 - Also, hold properties constant implicitly through structural constraints.
 - **Decision theory: multi-attribute utilities** to incorporate different objectives for different stakeholders into the generative process

Issues/Thoughts

- Uncertainty quantification
 - Models rely on predictions to generate promising molecules
 - Accuracy of these models is key
 - In small data regimes... models tend to be less accurate.
 - Incorporate uncertainty quantification into generative process! (Bayesian inference)
 - Exploration vs exploitation (Bayesian optimization)
 - Bayesian decision theory

Issues/Thoughts

- Synthesizability
 - Generated molecules must be easy to synthesize
 - This concept is hard to define!
 - Methods to automatically evaluate synthesizability without human intervention
 - Rather than molecules, generate synthetic pathways (learn reactions)

Other relevant fields

- Graph based deep learning
- Geometric deep learning
- Combinatorial black-box optimization
- Heuristic search algorithms
- Reinforcement Learning

The dream - Closing the loop

The reality?

- More likely: computer-aided molecular design
- Interpretability
 - Prediction is not enough, we need understanding (?).
 - Chemist need to derive an actionable hypothesis from model output.
 - If chemist sees, e.g. structural elements responsible for toxicity, she might have ideas on how to modify molecule to diminish toxicity
 - Interpretable representations: molecular descriptors...?
 - Interpretable methods to determine causality between structure presence and property (causal inference, counterfactual inference)

Bilodeau, C., Jin, W., Jaakkola, T., Barzilay, R., & Jensen, K. F. (2022). Generative models for molecular discovery: Recent advances and challenges. Wiley Interdisciplinary Reviews: Computational Molecular Science, e1608.

Meyers, J., Fabian, B., & Brown, N. (2021). De novo molecular design and generative models. Drug Discovery Today, 26(11), 2707–2715.

Elton, D. C., Boukouvalas, Z., Fuge, M. D., & Chung, P. W. (2019). Deep learning for molecular design—a review of the state of the art. Molecular Systems Design & Engineering, 4(4), 828-849.

Gallego, V., Naveiro, R., Roca, C., Ríos Insua, D., & Campillo, N. E. (2021). Al in drug development: a multidisciplinary perspective. Molecular Diversity, 25(3), 1461–1479.

Yoshikawa, N., Terayama, K., Sumita, M., Homma, T., Oono, K., & Tsuda, K. (2018). Population-based de novo molecule generation, using grammatical evolution. Chemistry Letters, 47(11), 1431–1434.

roi.naveiro@icmat.es https://roinaveiro.github.io/ https://github.com/roinaveiro

Adjacency Matrices

Permutation Invariant representation

Unconstrained generation

- Goal: learn general distribution of molecules in chemical space
- Evaluated based on chemical validity, novelty, uniqueness

Generation Issues

