Augmented Probability Simulation for solving Sequential Games

Roi Naveiro, Tahir Ekin, Aberto Torres, David Ríos <u>roi.naveiro@icmat.es</u> | Inst. of Mathematical Sciences (ICMAT-CSIC) Madrid | ADA 2022

Sequential Games

- Gaining Importance due to the raise of AML!
- Sequential Games in AML
 - **Continuous** and/or **high dimensional** decision spaces
 - Incomplete information

New Solution techniques

- Forget about (general) analytic solutions!
- Must acknowledge uncertainty about adversary
- We propose a **Simulation-based** solution approach:
 - Solves general security games, with uncertain outcomes, complete and incomplete information
 - Explain it for Sequential Defend-Attack games under incomplete information

Seq. Games with Uncertain Outcomes

Complete information

- **Common Knowledge Assumption**: the Defender knows the Attacker's probabilities and utilities.
- Compute expected utilities.

$$\psi_A(a,d) = \int u_A(a, heta)\, p_A(heta|d,a) \,\,\mathrm{d} heta \quad ext{and} \quad \psi_D(d,a) = \int u_D(d, heta)\, p_D(heta|d,a) \,\,\mathrm{d} heta.$$

- Attacker's best response to defense d

$$a^*(d) = rg \max_{a \in \mathcal{A}} \ \psi_A(d,a)$$

• Defender's optimal action

$$d^*_{ ext{GT}} = rg\max_{d\in\mathcal{D}} \, \psi_D(d,a^*(d)).$$

• $\left[d^*_{
m GT},\,a^*(d^*_{
m GT})
ight]$ is a Nash equilibrium and a sub-game perfect equilibrium.

Incomplete information

- ARA: give prescriptive support to the Defender
- The Defender **does not know** (u_A, p_A) .
- We need $p_D(a|d)!$
- Then, $d^*_{ ext{ARA}} = rg\max_{d \in \mathcal{D}} \psi_D(d)$, where

$$\psi_D(d) = \int \psi_D(a,d) \, p_D(a|d) \, \mathrm{d}a = \int \left[\int u_D(d, heta) \, p_D(heta|d,a) \, \mathrm{d} heta
ight] \, p_D(a|d) \, \mathrm{d}a,$$

ARA approach

- To elicitate $p_D(a|d)$, Defender analyses Attacker's problem.
- Given d, Attacker maximizes EU: $\int u_A(a, heta) p_A(heta|a,d) \,\mathrm{d} heta$
- Model uncertainty about (u_A,p_A) through distribution $F=(U_A,P_A)$.
- Induces distribution over attacker's expected utility $\Psi_A(a,d) = \int U_A(a, heta) P_A(heta|a,d) \,\mathrm{d} heta.$
- And $A^*(d) = rg\max_{x \in \mathcal{A}} \Psi_A(x,d)$
- Then,

$$p_D(A\leq a|d)=\mathbb{P}_F\left[A^*(d)\leq a
ight],$$

ARA approach

- In practice, use MC estimation
- Draw J samples $\left\{ \left(P_{A}^{i}, U_{A}^{i}
 ight)
 ight\}_{i=1}^{J}$ from F and

$${\hat p}_D(a|d) pprox rac{\#\{a = rg\max_{x \in \mathcal{A}} \ \Psi^i_A(x,d)\}}{J},$$

- With this estimate, we can solve the Defender's problem
- ARA solution is a **Bayes-Nash Eq.** (in sequential games)

MC solution method

 $\begin{aligned} \text{input: } J \\ \text{for } d \in \mathcal{D} \text{ do} \\ \left| \begin{array}{c} \text{for } i = 1 \text{ to } J \text{ do} \\ \left| \begin{array}{c} \text{Sample } u_A^i(a, \theta) \sim U_A(a, \theta) \\ \text{Sample } p_A^i(\theta \mid a, d) \sim P_A(\theta \mid d, a) \\ \text{Compute } a_i^*(d) \text{ as } \arg\max_a \int u_A^i(a, \theta) p_A^i(\theta \mid a, a) \text{ d}\theta \\ \hat{p}_D(A^* = a \mid d) = \frac{1}{J} \sum_{i=1}^J I[a_i^*(d) = a] \end{aligned} \right| \\ \text{Solve } \max_d \int \int u_D(d, \theta) p_D(\theta \mid a, d) \hat{p}_D(A^* = a \mid d) \text{ d}\theta \text{ d}a \end{aligned}$

- Requires generating $|\mathcal{D}| imes (|\mathcal{A}| imes Q imes J+P)$ samples.

APS - Idea 1

- Assume we can sample from $p_D(a|d)$
- Max expected utility

$$d^*_{ ext{ARA}} = rg\max_d \int \int u_D(d, heta) \cdot p_D(heta|d,a) \cdot p_D(a|d) d heta da$$

• Define

$$\pi_D(d, a, heta) \propto u_D(d, heta) \cdot p_D(heta|d, a) \cdot p_D(a|d)$$

• Mode of marginal $\pi_D(d)$ is $d^*_{ ext{ARA}}$!

APS - Idea 2

- Flat expected utilities, complicates mode identification
- Define

$$\pi_D^H(d, heta_1,\ldots, heta_H,a_1,\ldots,a_H) \propto \prod_{i=1}^H u_D(d, heta_i) \cdot p_D(heta_i|d,a_i) \cdot p_D(a_i|d)$$

• Marginal more peaked around max!

$$\pi_D^H(d) \propto \left[\int \int u_D(d, heta) \cdot p_D(heta|d,a) \cdot p_D(d|a) d heta da
ight]^H$$

APS - Implementation

- Sample from $\pi(d, heta_1, heta_2,\ldots, heta_H,a_1,\ldots,a_H)$ using MCMC.
- Find mode of *d* samples.
- 1. State of the Markov chain is $(d, \theta_1, \ldots, \theta_H, a_1, \ldots, a_H)$;

2. $ilde{d} \sim g(\cdot|d)$;

- 3. $ilde{a}_i \sim p_D(a | ilde{d}$) for $i = 1, \dots, H$;
- 4. $ilde{ heta}_i \sim p_D(heta | ilde{d}\,, ilde{a}_i)$ for $i=1,\ldots, H$;

5. Accept $ilde{d}$, $ilde{ heta}_1,\ldots, ilde{ heta}_H, ilde{a}_1,\ldots ilde{a}_H$ with probability

$$\min\left\{1,rac{g(d| ilde{d}\,)}{g(ilde{d}\,|d)}\cdot\prod_{i=1}^{H}rac{u_{D}(ilde{d}\,, ilde{ heta}_{i})}{u_{D}(d, heta_{i})}
ight\}$$

6. Repeat

- Discard first d samples and use the rest to estimate the mode

APS for ARA - $p_D(a|d)$

- We need to sample from $p_D(a|d)!$
- For given d, random augmented distribution $\Pi_A(a, heta|d) \propto U_A(a, heta) P_A(heta|d,a)$,
- Marginal $\Pi_A(a|d)=\int\Pi_A(a, heta|d)d heta$, proportional to A's random expected utility $\Psi_A(d,a)$.
- Random optimal attack $A^*(d)$ coincides a.s. with mode of $\Pi_A(a|d)$.
- Then:

1.
$$u_A(a, heta) \sim U_A(a, heta)$$
 and $p_A(heta|d,a) \sim P_A(heta|d,a)$

- 2. Build $\pi_A(a, heta|d) \propto u_A(a, heta) p_A(heta|d,a)$ which is a sample from $\Pi_A(a, heta|d)$.
- 3. Find $\mathrm{mode}[\pi_A(a|d)]$ which is a sample of $A^*(d)$, whose distribution is $\mathbb{P}_F\left[A^*(d)\leq a
 ight]=p_D(A\leq a|d).$

APS vs MC

- MC requires $|\mathcal{D}| imes (|\mathcal{A}| imes Q imes J+P)$ samples
- APS requires at most N imes (2M+5)+2M+4 samples
- Simple game with continuous decision sets

		Samples		Power		
Precision	Algorithm	Outer	Inner	Outer	Inner	Time (s)
0.1	$\begin{array}{c} \mathrm{MC} \\ \mathrm{APS} \end{array}$	$\begin{array}{c} 1000\\ 60\end{array}$	$\begin{array}{c} 100 \\ 100 \end{array}$	900	20	$\begin{array}{c} 0.007\\ 0.240\end{array}$
0.01	$\begin{array}{c} \mathrm{MC} \\ \mathrm{APS} \end{array}$	$717000\\ 300$	$\begin{array}{c} 100 \\ 100 \end{array}$	- 6000	- 100	$\begin{array}{c} 13.479 \\ 2.461 \end{array}$

Application

Application

- Elicited probability p(a|d) for some security controls.

Application

• Histogram of samples of security controls.

Conclusions

- APS for games, both standard and ARA.
- APS better when cardinality of decision spaces is big (or spaces are continuous).
- Suggested algorithmic approach
 - 1. Use MC for broad exploration of decision space.
 - 2. Use APS within regions of interest to get refined solutions.

Thank you!!

Website roinaveiro.github.io/

Email roi.naveiro@icmat.es

GitHub github.com/roinaveiro