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Adversarial Machine Learning

Study and guarantee robustness of ML-based decisions wrt adversarial data
manipulation.

Con�ict adversary - learning system modeled as a game.

Classical Decision Makers, Humans: discrete and low dimensional decision spaces.

New Decision Makers, Algorithms: continuous and high dimensional decision spaces.

Scalable gradient-based methods for solving sequential games in the new paradigm
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Motivation - Adversarial Regression

 and  are two competing wine brands.

 has a system to automatically measure wine quality training a regression over some
quality indicators. (Response value: wine quality, Covariates: quality indicators).

, aware of the actual superiority of its competitor's wines, decides to hack 's
system by manipulating the value of several quality indicators at operation time, to
arti�cially decrease 's quality rates.
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Motivation - Adversarial Regression

 is aware of the possibility of being hacked and decides to train its regression in an
adversarial robust manner.

 models this con�ict as a game between a learner  and a data generator 
. (Brückner and Scheffer, 2011).

The data generator tries to fool the learner modifying input data at application time,
inducing a change between the data distribution at training  and test 
times.
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The Learner Problem

Given a feature vector  and target , the learner's decision is to choose the
weight vector of a linear model , minimizing theoretical costs at
application time

To do so, the learner has a training matrix  and a vector of target values 

 (a sample from distribution  at training time).

x ∈ Rp
y ∈ R

fw(x) = x⊤w

θl(w, p̄, cl) = ∫ cl(x, y)(fw(x) − y)2 dp̄(x, y),

X ∈ Rn×p

y ∈ Rn
p(x, y)
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The Data Generator Problem

The data generator aims at changing features of test instances to induce a
transformation from  to .

 is the data generator's target value for instance  with real value 

The data generator aims at choosing the data transformation that minimizes the
theoretical costs given by

p(x, y) p̄(x, y)

z(x, y) x y

θd(w, p̄, cd) = ∫ cd(x, y)(fw(x) − z(x, y))2 dp̄(x, y) + Ωd(p, p̄)
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Regularized Empirical Costs

Theoretical costs de�ned above depend on the unknown distributions  and .

We focus on their regularized empirical counterparts, given by

p p̄

θ̂ l(w, X̄, cl) =
n

∑
i=1

cl,i(fw(x̄i) − yi)
2 +Ωl(fw),

θ̂d(w, X̄, cd) =
n

∑
i=1

cd,i(fw(x̄i) − zi)
2 +Ωd(X, X̄).
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Resulting Stackelberg Game

We assume the learner acts �rst, choosing a weight vector . Then the data generator,
after observing , chooses his optimal data transformation.
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The general problem

Defender (D) makes decision . Attacker (A), after observing , makes decision 
  

In AML,  and  usually high dimensional and continuous.

α ∈ Rn
α

β ∈ Rm

α β
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Gradient Methods

Forget about analytical solutions!

Gradient methods require computing  (and moving  in the direction of
increasing gradient...)

Inverting the Hessian has cubic complexity!

We need a different strategy...

dαuD α
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Backward Solution

Under certain conditions (Bottou, 1998), we can approximate our problem by  

Where .

.

Let's try to solve this problem instead.

T ≫ 1

limt→∞ β(α, t) = β∗(α)
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Backward Solution

It can be proved that (Naveiro and Ríos, 2019)  

Provided that satis�es the adjoint equation

With initial conditions .

λ

λ(T ) = −∂βuD(α,β)
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Backward Solution
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Backward Solution - Complexity Analysis

Time complexity
If  is the time required to evaluate  and , computing their
derivatives requires time .

First loop .

Second loop needs computing Hessian Vector Products, by basic results of AD, they
have same complexity as function evaluations!

Thus, overall time complexity is .

Space complexity
We need to store  for all .

 is the space requirement for storing each .

Overall space complexity .

τ(n,m) uD(α,β) uA(α,β)

O(τ(n,m))

O(Tτ(n,m))

O(Tτ(n,m))

βt(α) t

σ(n,m) βt(α)

O(Tσ(n,m))
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Forward Solution

Under certain conditions, we can approximate our problem by  

Again, .

.

T ≫ 1

limt→∞ βt(α) = β∗(α)
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Forward Solution

Using the chain rule  

To obtain  we can sequentially compute

This induces a dynamical system in that can be iterated in parallel to the
dynamical system in !

dαβT (α)

dαβt(α)

βt(α)
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Forward Solution
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Forward Solution - Complexity Analysis

Time complexity
Computing  requires time  as it requires computing 

Hessian vector products.

Computing requires computing Hessian vector products and thus time

.

If we compute the derivative in the other way, �rst we derive with respect to  and then
with respect to , the time complexity is .

Thus, computing  requires .

Overall, .

Space complexity
The values  are overwritten at each iteration.

Overall space complexity is .

∂2
β
uA(α,β) O(mτ(m,n)) m

∂α∂βuA(α,β) n

O(nτ(m,n))

β

α O(mτ(m,n))

∂α∂βuA(α,β) O(min(n,m)τ(m,n))

O(max[min(n,m),m]Tτ(m,n)) = O(mTτ(m,n))

βt(α)

O(σ(m,n)) 21 / 27



Conceptual Example

Attacker's utility is  and the defender's one is 

.

 vs .

uA(α,β) = −∑
n
i=1 3(βi − αi)

2

uD(α,β) = −∑
n
i=1(7αi + β2i )

O(Tτ(m,n)) O(mTτ(m,n))
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Application - Adversarial Regression

We compare ridge regression versus adversarial robust regression in the wine problem.

For ridge regression, we compute the weights in the usual way, and test them in data
attacked using those weights.

For adversarial robust regression we compute the weights solving

and test them in data attacked using those weights.

Note the dimension of the attacker's decision space is huge! He needs to modify 
 data points each with  components!k = 3263 n = 11
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Adversarial Regression
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Conclusions and future work

New algorithmic method able to solve huge Stackelberg Games (dimension of decision
sets of the order of ).

Could be implemented in any Automatic Differentiation library (Pytorch, tensor�ow...).

Novel derivation of the backward solution formulating the Stackelberg game as a PDE-
constrained optimization problem.

Application to games with uncertain outcomes.

Application to Bayesian Stackelberg Games and ARA.

Several attackers?

104
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Thank you!!

roi.naveiro@icmat.es

www.github.com/roinaveiro/GM_SG

www.roinaveiro.github.io
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