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Some ML applications in Online
Marketing and Molecule Design

Roi Naveiro



With a bit of creativity, some knowledge and a lot of effort; you can do incredible stuff...



With a bit of creativity, some knowledge and a lot of effort; you can do incredible stuff...

..if you know some math/stats/programming!



Online Marketing
Demo 1
Molecular Design

Demo 2



Online Marketing - The problem

e Xeerpa collects data from social loggings
o  Likes on facebook
o  Posts in Twitter

o PhotosinIC...
e Goal (at large): process this information and analyse it to improve marketing decisions
e Many things to be done!
e We will see how to process information coming from:

o Likes
o Images



Facebook defines many categories such as: IPAs, Veggie Food, Soccer, Rock ‘n’ Roll
Every category contains many Facebook pages (that users could like)

q=(qi,.-.,qr) where g; =1
if page belongs to category and 0 otherwise

Similarly, users are represented as vector d.

Goal: score every user in every category



“A common problem in Information Retrieval (IR) is the following: given a corpus of documents,
each of them represented by a sequences of words, how to find the more relevant documents to
a given query. This problem reduces to assigning a score to a (query, document) pair.”

This is the same! Words are Facebook pages, Users are documents, Categories are queries



Online Marketing - Scoring people based on Facebook likes

e |Rassigns a number for each word in each document, that weights the importance of a word in a
document

e Assign a weight to each like

e Two thoughts:
o Ifthereis no like, what should be the weight?
o Should a like to Real Madrid be as important as a like to

Cultural y Deportiva Leonesa?

e TF-IDF(asinIR)




Online Marketing - Scoring people based on Facebook likes

e Term Frequency
o 1iflike is present O otherwise
o 1/ (Number of likes)

® Inverse document frequency (how much info a like provides?)

log(nﬁl) + 1

o tf-idf =tf *idf




Each user is a vector
v(d) where v(d); tf-idf of the i-th like

Same for categories q!

A common score

score(d, q) =
Lives in [O,1]
User with no likes in category will have O

User liking all pages in category (and with no other likes) will have 1



Online Marketing - Community detection

Detect communities of similar users

Original Matrix Feature Matrix Coefficient
A W Matrix
H
m ~ m + k
n
n k

Minimize reconstruction error

|A—-WHI?37L, =370 (Xi; — [WH;)?
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Online Marketing - Community detection
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Online Marketing - Community detection

Men between 30 and 50
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Online Marketing - Scoring based on images!

e How to do score users in categories based on their IG images?
e \We need to associate each image to a category or group of categories
e This has to be done automatically!

e Demo







Artificial Intelligence
Index Report 2021

[m2

TOP 9 TAKEAWAYS

Al investment in drug design and discovery increased significantly: “Drugs, Cancer, Molecular,
Drug Discovery” received the greatest amount of private Al investment in 2020, with more than USD
13.8 billion, 4.5 times higher than 2019.
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The process of discovering new molecules

e Pharma: average time discovery - market, 13 years

e Outside pharma: 25 years m

Stage1
e Crucial 1st step: generate pool of candidates Jiscovery joiag
. . Stage2
e Daunting task (e.g. 10% - 10°° drug-like molecules) reinical

Phases

Stage 3
Clinical development

0 Effect on body

I Effectiveness at
treating diseases

m  Larger scale safety
and effectiveness

IV Long term safety

High-throughput
Screening

Library
Target Development
Identification and
Chemical Synthesis

Regulatory approval

‘/ 1 compound

'
Machine S
learning
P mode|
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The old way and the soon-to-be-old way
e Oldway

o Human experts propose, synthesize and test (in vitro)
e Soon-to-be-old way: high throughput virtual screening (HTVS)

o  Predict properties through computational chemistry...
o ..leverage rapid ML-based property predictions

Library
Target Development High—mroughpul
Identification and
Chemical Synthesis

Machine
learning
model



De novo molecular design

e Just existing molecules are explored

e Much time lost evaluating bad leads

e Traverse chemical space more “effectively”: reach optimal molecules with less evaluations than
brute-force screening

“De novo molecular design is the process of automatically
proposing novel chemical structures that optimally satisfy

desired properties”

Combinatorial, black-box, stochastic, multi-objective optimization with black-box constraints




Automatically proposing novel chemical structures

Two main ingredients
e Molecule representation

e (Cenerative model



Molecules are 3D QM objects with: nuclei with defined positions surrounded by electrons described by
complex wave-functions

e Digital encoding that serves as input to model
e Uniqueness and invertibility

e Trade-off: information lost vs complexity

o 3D coord. representation (symmetries?)
o More compact 2D (graph) representation NH,

e 1D, 2D and 3D

HO

i Wz



Simplified Molecular Input Line Entry System
Molecule as graph (bond length and conformational info is lost) O

Graph traversal Ibuprofen
Sequence of ASCII characters LL(Cytetecalcalit (e O)=0
Non-unique — Canonical SMILES

One-Hot-Encoding

e Leverage NLP techniques

a Canonical representation b Randomized representation

e SMILE-based methods struggle to generate valid g g .
molecules 8 ? v/l
e Valid = valency rules i . 2
i o
® Learn spurious grammar rules o ol 9
11
O OH
12—eipp13

CC (=0)0Oclcececeeclc (=0) 0 clece(ec(eecl)C(0)=0)0C(C)=0



Myriad of different ways. A useful distinction:
e Cradient-free methods

e GCradient-based methods



Work on sequences (SMILES) 0
OH
Goal: given training sequences — learn to generate new sequences
that resemble those of training. b
uprofen

CC(C)Cclccc(ccl)C(C)C(0)=0
Sequence: Si.r = (S1,...,97) where S; € V

Training: maximum likelihood, equiv to minimize loss function:

LMLE — _ S S log mo(s¢|Sir-1)

Generation: sequentially sample from multinomial dist.

Thermal rescaling

D; X exp(%)



Using properties to guide generation

2. Optimization with VAE

e Learn map from latent space to property (e.g. through GP)
e Optimize that map (gradient ascent, bayesian optimization, etc.)

SMILES input ©

(((((((

ENCODER
Neural Network

CONTINUOUS
MOLECULAR
REPRESENTATION f(z)
(Latent Space)
PROPERTY
PREDICTION
DECODER
Neural Network

Most Probable Decoding
argmax p(*lz)

SMILES output @
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Let’s generate some molecules!

Demo 2



roi.naveiro@icmat.es

https://roinaveiro.github.io/

https://github.com/roinaveiro
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