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ML meets security

Central assumption in predictive inference:
Train and operation data are id

Out of the sample generalization ̸= Out of the distribution
generalization

Broken by the presence of adversaries

Roi Naveiro 2



ML meets security

Source: https://portswigger.net/daily-swig/
trojannet-a-simple-yet-effective-attack-on-machine-learning-models
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ML meets security

Source: Finlaysonet.al.(2019)

Roi Naveiro 4

Finlayson et. al. (2019)


ML meets security

Not only in vision tasks!

https://nicholas.carlini.com/code/audio_
adversarial_examples/
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ML meets security - Optimal inventory
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Optimal inventory: 136 units
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ML meets security - Optimal inventory
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Optimal inventory: 116 units, 20% reduction!

Roi Naveiro 7



Adversarial ML

Framework to produce ML algorithms robust to
the adversarial data manipulations that may

occur.

We illustrate AML concepts in a statistical
classification context.
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Stat. Classification - The (usual) setup

• Classifier C (she).
• Instances’ class: y ∈ {1, . . . , k}.
• Covariates x ∈ Rd, inform about y through p(y|x).

1. Inference
• e.g. parametric models: [p(y|x, θ)].
• Inferences about θ using training data D.

• MLE.

θMLE = argmax p(D|θ)
.

• Bayes. Sample from posterior.

p(θ|D) ∝ p(D|θ)p(θ)
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Stat. Classification - The (usual) setup

2. Decision
• C aims at classifying x to pertain to the class

argmax
yC

k∑
y=1

uC(yC, y)p(y|x),

• MLE.

p(y|x) := p(y|x, θMLE)

.
• Bayes. Approximate using MC (with posterior samples).s

p(y|x) := p(y|x,D) =

∫
p(y|x, θ)p(θ|D) dθ,
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Adversarial Stat. Classification

• Adversary A (he).
• Transforms x into x′ = a(x) to fool C making her misclassify

instances to attain some benefit.

• Issue: adversary unaware C classifies based on x′, instead of the
actual (not observed) covariates.
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Two running examples

• Spam detection.

• Spambase Dataset from UCI
• Binary features

• Good-Words-Insertion attacks

Table: Accuracy comparison (with precision) of four classifiers on clean
(untainted), and attacked (tainted) data.

Classifier Untainted Unprotected

Naive Bayes 0.891± 0.003 0.774± 0.026
Logistic Reg. 0.928± 0.004 0.681± 0.009

Neural Network 0.905± 0.003 0.764± 0.007
Random Forest 0.946± 0.002 0.663± 0.006
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Two running examples

• Computer vision
• Simple deep CNN [Krizhevsky et al., 2012] → 99% accuracy in

MNIST.
• Under the FGSM [Goodfellow et al., 2014] attack → 62% accuracy.

Original image
Prediction: 2

Perturbed image
Prediction: 7
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AML - Usual workflow

1. Gathering intelligence

2. Forecasting likely attacks

3. Protecting ML algorithms
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1. Gathering intelligence

1. Attacker goals: violation type and attack specificity.

• Integrity, availability, privacy violations

• Targeted vs indiscriminate.

2. Attacker knowledge: Black, white, gray box.

3. Attacker capabilities: poisoning vs evasion
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2. Forecasting likely attacks

• Models for how adversary would attack.

• Must include our uncertainty.
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3. Protecting ML algorithms

• a.k.a. inference in presence of adversaries

• Robust inference to likely data manipulations

• Protecting during operations vs during training
• Most research based on game theory

• Common-knowledge!

• We provide a Bayesian alternative!
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AML: Bayesian Perspectives

Introduced in: [Naveiro, Redondo, Insua, and Ruggeri, 2019],
[Insua, Naveiro, Gallego, and Poulos, 2020]

Revisiting the pipeline (of AML):

1. Gather intelligence: create attacking model (how adversary would
behave when observing x)

2. Forecasting likely attacks probabilistic model of attacker (likely
attacks + uncertainty)

3. Protect ML algorithms inference engine against such attacking
model.

Two main approaches depending on how 3. is done

• At operation time (robust predictive distribution).
• At training time (robust posterior distribution).
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Protecting during operations

• C receives (potentially attacked) covariates x′

• She decides

argmax
yC

k∑
y=1

u(yC, y) · p(y|x′)︸ ︷︷ ︸
Posterior pred. dist.
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Protecting during operations

• C receives (potentially attacked) covariates x′

• She models her uncertainty about latent originating instance x
through p(x|x′)

argmax
yC

k∑
y=1

u(yC, y)

[∫
Xx′

p(y|x)p(x|x′)dx

]
︸ ︷︷ ︸

Robust posterior predictive distribution
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Protecting during operations

• C receives (potentially attacked) covariates x′

• She models her uncertainty about latent originating instance x
through p(x|x′)

argmax
yC

k∑
y=1

u(yC, y)

[∫
Xx′

p(y|x)p(x|x′)dx

]
︸ ︷︷ ︸

Robust posterior predictive distribution

• Often, MC approximation, sample x1, . . . , xN ∼ p(x|x′)∫
Xx′

p(y|x)p(x|x′)dx ≃ 1
N

N∑
n=1

p(y|xn)
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Spam detection - revisited

Table: Accuracy comparison (with precision) of four classifiers on clean
(untainted), and attacked (tainted) data, when unprotected, ARA protected
during operation and ARA protected during training.

Classifier Untainted Unprotected ARA op.

Naive Bayes 0.891± 0.003 0.774± 0.026 0.924± 0.004
Logistic Reg. 0.928± 0.004 0.681± 0.009 0.917± 0.003

Neural Network 0.905± 0.003 0.764± 0.007 0.811± 0.010
Random Forest 0.946± 0.002 0.663± 0.006 0.820± 0.005
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Protecting during operations

• Adversary unaware classifier computes p(θ|D).

• Presence of an adversary at operations changes data generation
mechanism ⇒ performance degradation

• Propose robust adversarial posterior distribution∫
p(θ|D̃)p(D̃|D)dD̃
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Digit recognition - revisited
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Digit recognition - revisited
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Conclusions

• Probabilistic framework for AML: account explicitly for the
presence of adversary and our uncertainty about his
decision-making.

• Two protection strategies:
1. During operations.
2. During training.

• Any attack model could be incorporated, we propose one based on
decision theory.
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Thank you!

Contact: roi.naveiro@icmat.es
Code at: https://github.com/roinaveiro/ACRA_2
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