Adversarial ML: Bayesian Perspectives

Texas State University

Roi Naveiro

Institute of Mathematical Sciences ICMAT-CSIC

joint work with

William Caballero, Tahir Ekin, Víctor Gallego, Alberto Redondo, David Ríos Insua and Fabrizio Ruggeri

ML meets security

Central assumption in predictive inference: Train and operation data are id

Out of the sample generalization \neq Out of the distribution generalization

Broken by the presence of adversaries

ML meets security

Source: https://portswigger.net/daily-swig/

 $\verb|trojannet-a-simple-yet-effective-attack-on-machine-learning-models||$

ML meets security

Original image

Dermatoscopic image of a benign melanocytic nevus, along with the diagnostic probability computed by a deep neural network.

Benign Malignant

Adversarial noise

Perturbation computed by a common adversarial attack technique. See (7) for details. Adversarial example

=

Combined image of nevus and attack perturbation and the diagnostic probabilities from the same deep neural network.

Source: Finlaysonet.al. (2019)

Not only in vision tasks!

https://nicholas.carlini.com/code/audio_ adversarial_examples/

ML meets security - Optimal inventory

Optimal inventory: 136 units

ML meets security - Optimal inventory

Optimal inventory: 116 units, 20% reduction!

Framework to produce ML algorithms **robust to the adversarial data manipulations** that may occur.

We illustrate AML concepts in a statistical classification context.

Stat. Classification - The (usual) setup

- Classifier C (she).
- Instances' class: $y \in \{1, \ldots, k\}$.
- Covariates $x \in \mathbb{R}^d$, inform about *y* through p(y|x).

1. Inference

- e.g. parametric models: $[p(y|x, \theta)]$.
- Inferences about θ using training data \mathcal{D} .
- MLE.

$$\theta_{\textit{MLE}} = \arg \max p(\mathcal{D}|\theta)$$

• Bayes. Sample from posterior.

$$p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta)p(\theta)$$

Stat. Classification - The (usual) setup

2. Decision

• C aims at classifying x to pertain to the class

$$\arg\max_{y_C} \sum_{y=1}^k u_C(y_C, y) p(y|x),$$

• MLE.

$$p(y|x) := p(y|x, \theta_{MLE})$$

• Bayes. Approximate using MC (with posterior samples).s

$$p(y|x) := p(y|x, \mathcal{D}) = \int p(y|x, \theta) p(\theta|\mathcal{D}) d\theta,$$

- Adversary A (he).
- Transforms x into x' = a(x) to fool C making her misclassify instances to attain some benefit.
- **Issue**: adversary unaware *C* classifies based on *x*['], instead of the actual (not observed) covariates.

Two running examples

- Spam detection.
- Spambase Dataset from UCI
- Binary features
- Good-Words-Insertion attacks

Table: Accuracy comparison (with precision) of four classifiers on clean (untainted), and attacked (tainted) data.

Classifier	Untainted	Unprotected
Naive Bayes	$\textbf{0.891} \pm \textbf{0.003}$	0.774 ± 0.026
Logistic Reg.	0.928 ± 0.004	0.681 ± 0.009
Neural Network	0.905 ± 0.003	0.764 ± 0.007
Random Forest	0.946 ± 0.002	0.663 ± 0.006

Two running examples

- Computer vision
- Simple deep CNN [Krizhevsky et al., 2012] \rightarrow 99% accuracy in MNIST.
- Under the FGSM [Goodfellow et al., 2014] attack \rightarrow 62% accuracy.

Perturbed image Prediction: 7 1. Gathering intelligence

2. Forecasting likely attacks

3. Protecting ML algorithms

1. Gathering intelligence

1. Attacker goals: violation type and attack specificity.

- Integrity, availability, privacy violations
- Targeted vs indiscriminate.

2. Attacker knowledge: Black, white, gray box.

3. Attacker capabilities: poisoning vs evasion

- Models for how adversary would attack.
- Must include our uncertainty.

- a.k.a. inference in presence of adversaries
- Robust inference to likely data manipulations
- Protecting during operations vs during training
- Most research based on game theory
 - Common-knowledge!
- We provide a Bayesian alternative!

Introduced in: [Naveiro, Redondo, Insua, and Ruggeri, 2019], [Insua, Naveiro, Gallego, and Poulos, 2020]

Revisiting the pipeline (of AML):

- 1. **Gather intelligence**: create attacking model (how adversary would behave when observing *x*)
- 2. Forecasting likely attacks probabilistic model of attacker (likely attacks + uncertainty)
- 3. **Protect ML algorithms** inference engine against such attacking model.

Two main approaches depending on how 3. is done

- At operation time (robust predictive distribution).
- At training time (robust posterior distribution).

Protecting during operations

- C receives (potentially attacked) covariates x'
- She decides

$$\underset{y_{C}}{\operatorname{arg\,max}} \sum_{y=1}^{k} u(y_{C}, y) \qquad \cdot \underbrace{p(y|x')}_{\operatorname{Posterior\,pred,\,dist}}$$

Protecting during operations

- C receives (potentially attacked) covariates x'
- She models her uncertainty about latent originating instance **x** through p(x|x')

$$\arg\max_{y_{C}} \sum_{y=1}^{k} u(y_{C}, y) \qquad \underbrace{\left[\int_{\mathcal{X}_{x'}} p(y|x) p(x|x') dx\right]}_{\mathcal{X}_{x'}}$$

Robust posterior predictive distribution

Protecting during operations

- C receives (potentially attacked) covariates x'
- She models her uncertainty about latent originating instance x through p(x|x')

$$\arg\max_{y_{C}} \sum_{y=1}^{k} u(y_{C}, y) \qquad \underbrace{\left[\int_{\mathcal{X}_{x'}} p(y|x) p(x|x') dx\right]}_{\mathcal{X}_{x'}}$$

Robust posterior predictive distribution

• Often, MC approximation, sample $x_1, \ldots, x_N \sim p(x|x')$

$$\int_{\mathcal{X}_{x'}} p(y|x) p(x|x') dx \simeq \frac{1}{N} \sum_{n=1}^{N} p(y|x_n)$$

Table: Accuracy comparison (with precision) of four classifiers on clean (untainted), and attacked (tainted) data, when unprotected, ARA protected during operation and ARA protected during training.

Classifier	Untainted	Unprotected	ARA op.
Naive Bayes	$\textbf{0.891} \pm \textbf{0.003}$	0.774 ± 0.026	0.924 ± 0.004
Logistic Reg.	0.928 ± 0.004	0.681 ± 0.009	0.917 ± 0.003
Neural Network	0.905 ± 0.003	0.764 ± 0.007	0.811 ± 0.010
Random Forest	0.946 ± 0.002	0.663 ± 0.006	0.820 ± 0.005

- Adversary unaware classifier computes $p(\theta|D)$.
- Presence of an adversary at operations changes data generation mechanism ⇒ performance degradation
- Propose robust adversarial posterior distribution

$$\int \boldsymbol{\mathsf{p}}(heta | ilde{\mathcal{D}}) \boldsymbol{\mathsf{p}}(ilde{\mathcal{D}} | \mathcal{D}) \, \mathrm{d} ilde{\mathcal{D}}$$

Digit recognition - revisited

Digit recognition - revisited

- **Probabilistic framework for AML**: account explicitly for the presence of adversary and our uncertainty about his decision-making.
- Two protection strategies:
 - 1. During operations.
 - 2. During training.
- Any attack model could be incorporated, we propose one based on decision theory.

Thank you!

Contact: roi.naveiro@icmat.es Code at: https://github.com/roinaveiro/ACRA_2

Roi Naveiro

- I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. *arXiv preprint arXiv:1412.6572*, 2014.
- D. R. Insua, R. Naveiro, V. Gallego, and J. Poulos. Adversarial machine learning: Perspectives from adversarial risk analysis. *arXiv preprint arXiv:2003.03546*, 2020.
- A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In *Advances in Neural Information Processing Systems*, pages 1097–1105, 2012.
- R. Naveiro, A. Redondo, D. R. Insua, and F. Ruggeri. Adversarial classification: An adversarial risk analysis approach. *International Journal of Approximate Reasoning*, 113:133 – 148, 2019. ISSN 0888-613X. doi: https://doi.org/10.1016/j.ijar.2019.07.003. URL http://www.sciencedirect.com/science/article/pii/ S0888613X18304705.